제대로 따라가기 (3) C++ 프로그래밍 튜토리얼 :: 컴포넌트와 콜리전


작성버전 :: 4.21.0


언리얼 엔진 튜토리얼인 컴포넌트와 콜리전에서는 컴포넌트를 만들어 계층구조에 넣고 게임플레이 도중 제어하는 법과, 컴포넌트를 사용하여 폰이 입체 오브젝트로 된 월드를 돌아다니도록 만드는 법을 배울 수 있다..


튜토리얼대로 하면 문제가 발생해서 제대로 따라갈 수 없는 부분으로 동작이 가능하게 수정해야하는 부분은 빨간 블럭으로 표시되어 있다.

이번 튜토리얼에서 새로 배우게 되는 내용은 글 제일 끝에 "이번 섹션에서 배운 것"에 정리된다.

출처: https://wergia.tistory.com/ [베르의 프로그래밍 노트]

제대로 따라가기 (3) C++ 프로그래밍 튜토리얼 :: 컴포넌트와 콜리전


작성버전 :: 4.21.0


언리얼 엔진 튜토리얼인 컴포넌트와 콜리전에서는 컴포넌트를 만들어 계층구조에 넣고 게임플레이 도중 제어하는 법과, 컴포넌트를 사용하여 폰이 입체 오브젝트로 된 월드를 돌아다니도록 만드는 법을 배울 수 있다..


튜토리얼대로 하면 문제가 발생해서 제대로 따라갈 수 없는 부분으로 동작이 가능하게 수정해야하는 부분은 빨간 블럭으로 표시되어 있다.

이번 튜토리얼에서 새로 배우게 되는 내용은 글 제일 끝에 "이번 섹션에서 배운 것"에 정리된다.

출처: https://wergia.tistory.com/ [베르의 프로그래밍 노트]

제대로 따라가기 (3) C++ 프로그래밍 튜토리얼 :: 컴포넌트와 콜리전


작성버전 :: 4.21.0


언리얼 엔진 튜토리얼인 컴포넌트와 콜리전에서는 컴포넌트를 만들어 계층구조에 넣고 게임플레이 도중 제어하는 법과, 컴포넌트를 사용하여 폰이 입체 오브젝트로 된 월드를 돌아다니도록 만드는 법을 배울 수 있다..


튜토리얼대로 하면 문제가 발생해서 제대로 따라갈 수 없는 부분으로 동작이 가능하게 수정해야하는 부분은 빨간 블럭으로 표시되어 있다.

이번 튜토리얼에서 새로 배우게 되는 내용은 글 제일 끝에 "이번 섹션에서 배운 것"에 정리된다.

출처: https://wergia.tistory.com/ [베르의 프로그래밍 노트]

제대로 따라가기 (4) C++ 프로그래밍 튜토리얼 :: 플레이어 제어 카메라

작성버전 :: 4.21.0

언리얼 엔진 튜토리얼인 플레이어 제어 카메라에서는 카메라를 활성화시키고 전환하는 법을 배울 수 있다. 제대로 따라가기 :: 컴포넌트와 콜리전에서 카메라 컴포넌트와 스프링 암 컴포넌트를 다루는 법에 대해서 확실히 숙지했다면 이번 파트는 넘어가도 상관은 없다.


튜토리얼대로 하면 문제가 발생해서 제대로 따라갈 수 없는 부분으로 동작이 가능하게 수정해야하는 부분은 빨간 블럭으로 표시되어 있다.


이번 튜토리얼에서 새로 배우게 되는 내용은 글 제일 끝에 "이번 섹션에서 배운 것"에 정리된다.



1. 폰에 카메라 붙이기(문서)


새로운 프로젝트를 만들고, Pawn 클래스를 상속받는 "PawnWithCamera" 클래스를 생성해보자.




다음은, PawnWithCamera.h의 클래스 정의 아래에 다음 코드를 추가한다.


protected:
    UPROPERTY(EditAnywhere)
    USpringArmComponent* OurCameraSpringArm;
    UCameraComponent* OurCamera;


위의 변수들을 사용해서 Camera Component가 붙은 Spring Arm Component를 만든다. 스프링 암은 카메라가 이동하면서 유연한 느낌으로 따라붙을 수 있게 도와준다.


여기서 USpringArmComponent와 UCameraComponent가 정의되지 않았다고 에러가 발생하는 문제는 앞에 class를 붙여주면 해결된다.


protected:
    UPROPERTY(EditAnywhere)
    class USpringArmComponent* OurCameraSpringArm;
    class UCameraComponent* OurCamera;


PawnWithCamera.cpp의 APawnWithCamera::APawnWithCamera() 생성자 함수에서 실제 컴포넌트를 생성하는 작업을 할 차례이다.


RootComponent = CreateDefaultSubobject(TEXT("RootComponent"));
OurCameraSpringArm = CreateDefaultSubobject(TEXT("CameraSpringArm"));
OurCameraSpringArm->SetupAttachment(RootComponent);
OurCameraSpringArm->SetRelativeLocationAndRotation(FVector(.0f, .0f, 50.f), FRotator(-60.f, .0f, .0f));
OurCameraSpringArm->TargetArmLength = 400.f;
OurCameraSpringArm->bEnableCameraLag = true;
OurCameraSpringArm->CameraLagSpeed = 3.0f;


RootComponent에 대입하는 CreateDefaultSubobject() 함수의 문제는 템플릿 인자에 USceneComponent를 넣어주면 해결된다.


RootComponent = CreateDefaultSubobject<USceneComponent>(TEXT("RootComponent"));


OurCameraSpringArm에 대입하는 CreateDefaultSubobject() 함수의 문제는 템플릿 인자에 USpringArmComponent를 넣어주면 해결된다.


OurCameraSpringArm = CreateDefaultSubobject<USpringArmComponent>(TEXT("CameraSpringArm"));


OurCameraSpringArm에 불완전한 형식은 사용할 수 없다는 에러가 뜨는 문제는 PawnWithCamera.cpp 상단 전처리기 리스트에서 "Engine/Classes/GameFramework/SpringArmComponent.h"를 포함시켜주면 해결된다.


#include "Engine/Classes/GameFramework/SpringArmComponent.h"


위의 코드에 따르면, 비어있는 Scene Component가 루트로 생성되며, 거기에 Spring Arm Component를 만들어 붙인다. 그리고 Spring Arm의 기본 피치(Pitch)를 -60도로(60도 아래쪽으로) 설정하고, 위치는 루트의 50유닛 위로 정한다. Spring Arm Component의 길이와 유연성을 위한 변수도 설정해주었다.


Spring Arm의 설정이 끝났다면 Spring Arm Component 끝의 소켓에 Camera Componenet를 만들어서 연결해주면 된다.


OurCamera = CreateDefaultSubobject(TEXT("GameCamera"));
OurCamera->SetupAttachment(OurCameraSpringArm, USpringArmComponent::SocketName);


OurCamera에 대입하는 CreateDefaultSubobject() 함수의 문제는 템플릿 인자에 UCameraComponent를 넣어주면 해결된다.


OurCamera = CreateDefaultSubobject<UCameraComponent>(TEXT("GameCamera"));


OurCamera에 불완전한 형식은 사용할 수 없다는 에러가 뜨는 문제는 PawnWithCamera.cpp 상단 전처리기 리스트에서 "Engine/Classes/Camera/CameraComponent.h"를 포함시켜주면 해결된다.


#include "Engine/Classes/Camera/CameraComponent.h"


마지막으로 로컬 플레이어 스폰시 자동으로 Pawn을 조종하도록 다음 코드를 추가한다.


AutoPossessPlayer = EAutoReceiveInput::Player0;



2. 카메라 제어 입력 환경설정(문서)


어떤 방식으로 카메라를 제어할지 결정하고 그에 맞게 입력을 구성해야 한다. 이 프로젝트에서는 마우스 오른쪽 버튼을 클릭하면 카메라를 따라다니는 거리를 줄이고 시야를 확대하고, 마우스로는 카메라의 각도를, WASD로는 폰을 이동을 제어하도록 하자.


에디터에서 편집 드롭다운 메뉴에서 프로젝트 세팅을 선택하자.


 

[프로젝트 세팅>엔진>입력]에서 액션 매핑을 다음과 같이 설정하자.



 

3. 입력에 반응하는 C++ 코드 작성(문서)


이제 게임에서 사용할 수 있는 입력 매핑이 생겼으니, 입력 매핑으로부터 받은 데이터를 저장할 멤버 변수들을 구성할 차례이다.


업데이트 중에 이동과 마우스 방향 축을 알아야 하는데 이 값으로는 FVector2D 타입이 적합하다. 그리고 줌인 중인지 줌아웃 중인지도 알아야하며, 얼마나 줌된 상태인지를 알아야한다. 그것을 위해서 PawnWithCamera.h의 클래스 정의에 다음과 같이 멤버 변수 선언을 추가해주자.


FVector2D MovementInput;
FVector2D CameraInput;
float ZoomFactor;
bool bZoomingIn;


그 다음엔, 입력에 대한 기록을 유지할 함수도 그 아래에 추가하자.


void MoveForward(float AxisValue);
void MoveRight(float AxisValue);
void PitchCamera(float AxisValue);
void YawCameara(float AxisValue);
void ZoomIn();
void ZoomOut();


그리고 PawnWithCamera.cpp에서 위 함수들의 구현을 작성하면 된다.


void APawnWithCamera::MoveForward(float AxisValue)
{
    MovementInput.X = FMath::Clamp(AxisValue, -1.0f, 1.0f);
}

void APawnWithCamera::MoveRight(float AxisValue)
{
    MovementInput.Y = FMath::Clamp(AxisValue, -1.0f, 1.0f);
}

void APawnWithCamera::PitchCamera(float AxisValue)
{
    CameraInput.Y = AxisValue;
}

void APawnWithCamera::YawCamera(float AxisValue)
{
    CameraInput.X = AxisValue;
}

void APawnWithCamera::ZoomIn()
{
    bZoomingIn = true;
}

void APawnWithCamera::ZoomOut()
{
    bZoomingIn = false;
}


입력 데이터를 저장할 코드를 모두 구현했으니, 이제 APawnWithCamera::SetupPlayerInputComponent() 함수에서 입력 이벤트와 함수를 바인딩할 차례이다.


InputComponent->BindAction("ZoomIn", IE_Pressed, this, &APawnWithCamera::ZoomIn);
InputComponent->BindAction("ZoomOut", IE_Released, this, &APawnWithCamera::ZoomOut);

InputComponent->BindAxis("MoveForward", this, &APawnWithCamera::MoveForward);
InputComponent->BindAxis("MoveRight", this, &APawnWithCamera::MoveRight);
InputComponent->BindAxis("CameraPitch", this, &APawnWithCamera::PitchCamera);

InputComponent->BindAxis("CameraYaw", this, &APawnWithCamera::YawCamera);


만약 InputComponent의 함수를 호출하려고 할 때, 불완전한 형식은 사용할 수 없다는 에러가 발생한다면 PawnWithCamera.cpp 전처리기에 "Engine/Classes/Components/InputComponent.h"를 포함하면 된다.


#include "Engine/Classes/Components/InputComponent.h"


바인딩이 모두 끝났다면, 이제 입력을 통해 들어오는 변수 값에 따라서 Tick() 함수에서 매프레임 Pawn과 Camera를 업데이트하도록 처리하자.


{
    if (bZoomingIn)
    {
        ZoomFactor += DeltaTime * 2.0f;
    }
    else
    {
        ZoomFactor -= DeltaTime * 4.0f;
    }
    ZoomFactor = FMath::Clamp(ZoomFactor, 0.0f, 1.0f);
    OurCamera->FieldOfView = FMath::Lerp(90.0f, 60.0f, ZoomFactor);
    OurCameraSpringArm->TargetArmLength = FMath::Lerp(400.0f, 300.0f, ZoomFactor);
}


이 코드에서는 줌인/줌아웃할 때, 걸이는 시간, FOV 값, 스프링 암의 거리 등을 하드코딩해서 사용하고 있지만, 이 값들을 멤버 변수로 만들어서 UPROPERTY(EditAnywhere)로 설정해서 에디터에 노출시키면 프로그래머가 아닌 개발자들도 에디터에서 값을 변경할 수 있고, 프로그래머도 값을 바꿀때마다 컴파일을 새로 할 필요가 없게 만들 수 있다.


{
    FRotator NewRotation = GetActorRotation();
    NewRotation.Yaw += CameraInput.X;
    SetActorRotation(NewRotation);
}

{
    FRotator NewRotation = OurCameraSpringArm->GetComponentRotation();
    NewRotation.Pitch = FMath::Clamp(NewRotation.Pitch + CameraInput.Y, -80.0f, -15.0f);
    OurCameraSpringArm->SetWorldRotation(NewRotation);
}


이 코드 블록은 Pawn의 요(Yaw)를 마우스 X축으로 직접 회전시키되, 카메라 시스템은 마우스 Y축의 피치(Pitch) 변화에만 반응한다. 액터나 그 서브클래스를 회전시키면, 실제로 루트 레벨의 컴포넌트가 회전되어 거기에 붙어있는 모든 오브젝트에 간접적으로 영향을 미친다.


{
    if (!MovementInput.IsZero())
    {
        MovementInput = MovementInput.GetSafeNormal() * 100.0f;
        FVector NewLocation = GetActorLocation();
        NewLocation += GetActorForwardVector() * MovementInput.X * DeltaTime;
        NewLocation += GetActorRightVector() * MovementInput.Y * DeltaTime;
        SetActorLocation(NewLocation);
    }
}


GetActorForwardVector()와 GetActorRightVector()를 사용하면 액터가 향하는 방향을 기준으로 이동하는 것이 가능하다. 카메라가 액터와 같은 방향을 향하고 있기 때문에 전방 키가 항상 플레이어가 바라보는 방향이 앞쪽이 되게 해준다.


모든 코딩 작업이 끝났다. 언리얼 에디터로 돌아가서 컴파일 한 뒤, 레벨에 배치해보자.


추가로 폰에 스태틱 메시나 비주얼 컴포넌트를 추가해서 자유롭게 플레이해보자.


폰이 움직일때는 카메라가 부드럽게 따라가지만 회전할 때는 카메라가 즉각 반응하는 것을 느낄 수 있을 것이다. Camera Rotation Lag를 켜거나 Camera Lag Speed를 수정해서 조작감에 어떤 영향을 미치는지 확인해보자.








 

이번 섹션에서 배운 것


1. USceneComponent


SetRelativeLocationAndRotation(FVector(), FRotator());


루트 오브젝트로부터의 위치와 회전을 동시에 설정할 수 있는 함수.


2. FVector2D


FVector2D Vector2D;


FVector의 2D 버전 구조체. FVector는 3차원 상의 X, Y, Z 좌표를 가지지만 FVector2D는 2차원 상의 X, Y 좌표만을 가진다.


3. UCameraComponent


UCameraComponent* CameraComponent;


CameraComponent->FieldOfView = 60.0f;


원근감 모드(Projection Mode)에서의 수평 시야각을 Field of view라고 한다. 수평 시야각이 넓어지면 물체가 확대되어서 보이기 때문에 주로 FPS게임에서 저격 소총의 줌 효과에 주로 사용된다.


4. FMath::Lerp()


FMath::Lerp(ValueA, ValueB, Factor);


선형 보간 함수이다. ValueA와 ValueB 사이의 Factor(0.0~1.0)값의 위치에 해당 하는 값을 구해준다.


ex) ValueA = 0, ValueB = 2일 때, Factor = 0.5이면 1을 돌려준다.


5. AActor


GetActorForwardVector();


액터의 Forward 방향을 구하는 함수


GetActorRightVector();


액터의 Right 방향으로 구하는 함수

반응형
  1. BeautyfullCastle 2018.12.16 15:08 신고

    감사합니다. 잘 보고 있습니다.

    오타가 있어 제보 드립니다.

    * Cameara -> Camera
    void APawnWithCamera::YawCameara(float AxisValue)

    * "ZoomIn" -> "ZoomOut"
    InputComponent->BindAction("ZoomIn", IE_Released, this, &APawnWithCamera::ZoomOut);

    * 입력 탭에 ZoomOut 바인딩이 없습니다.

    • wergia 2018.12.17 00:27 신고

      오타 제보 감사합니다.
      빠르게 작업하려고 하다보니 오타가 발생했나봅니다.
      수정했습니다.

제대로 따라가기 (3) C++ 프로그래밍 튜토리얼 :: 컴포넌트와 콜리전

 

작성버전 :: 4.21.0

 

언리얼 엔진 튜토리얼인 컴포넌트와 콜리전에서는 컴포넌트를 만들어 계층구조에 넣고 게임플레이 도중 제어하는 법과, 컴포넌트를 사용하여 폰이 입체 오브젝트로 된 월드를 돌아다니도록 만드는 법을 배울 수 있다..

 

튜토리얼대로 하면 문제가 발생해서 제대로 따라갈 수 없는 부분으로 동작이 가능하게 수정해야하는 부분은 빨간 블럭으로 표시되어 있다.
 

이번 튜토리얼에서 새로 배우게 되는 내용은 글 제일 끝에 "이번 섹션에서 배운 것"에 정리된다.

 

 

1. 컴포넌트 만들고 붙이기(문서)

 

프로젝트를 새로 생성하고 Pawn 클래스를 상속받는 "CollidingPawn"을 생성한다. 이 폰은 컴포넌트를 가지고 레벨 안에서 이동하고 입체 오브젝트와 충돌하게 된다.

 

 

 

 

CollidingPawn.h의 클래스 정의 하단부에 UParticleSystemComponent를 추가한다.

 

UParticleSystemComponent* OurParticleSystem;

 

UParticleSystemComponent가 정의되어 있지 않다고 에러가 발생한다면, CollidingPawn.generated.h 포함 전처리기 위쪽에서 "Engine/Classes/Particles/ParticleSystemComponent.h"을 포함시켜 주면 된다.

 

// Fill out your copyright notice in the Description page of Project Settings.

#pragma once

#include "CoreMinimal.h"
#include "GameFramework/Pawn.h"
#include "Engine/Classes/Particles/ParticleSystemComponent.h"
#include "CollidingPawn.generated.h"

 

여기에 대한 또 다른 해결책으로는 UParticleSystemComponent 타입의 변수를 선언할 때, 아래처럼 앞에 class를 붙여주면 헤더를 .h에 포함하지 않아도 에러가 발생하지 않는다.

 

class UParticleSystemComponent* OurParticleSystem;

 

대신 이 경우에는 .cpp에서 해당 타입의 변수를 사용할 때, 불완전한 형식을 사용할 수 없다는 에러가 발생할 것이기 때문에 .cpp의 헤더 포함 전처리기에 "Engine/Classes/Particles/ParticleSystemComponent.h"를 포함하는 코드를 추가시켜주어야 한다.

 

멤버 변수로 만들지 않아도 컴포넌트를 만들 수 있지만, 코드에서 컴포넌트를 사용하려면 클래스 멤버 변수로 만들어야 한다.

 

이 다음에는 CollidingPawn.cpp의 ACollidingPawn::ACollidingPawn() 생성자 함수를 편집해서 필요한 컴포넌트들을 스폰할 코드를 추가하고 계층구조로 배치해야 한다. 물리 월드와 상호작용을 위한 Sphere Component, 콜리전 모양을 시각적으로 보여줄 Static Mesh Component, 시각적인 효과를 더하며 켜고 끌 수 있는 Particle System Component, 게임 내의 시점 제어를 위해 Camera Component에 덧붙일 Spring Arm Component를 만든다.

 

먼저 계층구조에서 루트가 될 컴포넌트를 결정해야 한다. 이 튜토리얼에서는 Sphere Component가 루트 컴포넌트가 된다. 물리적으로 실존이 있고, 게임 월드와의 상호작용이 가능하기 때문이다. 참고로 액터에는 계층구조 안에서 다수의 물리 기반 컴포넌트가 있을 수 있지만, 이 튜토리얼에서는 하나만 사용한다.

 

USphereComponent* SphereComponent = CreateDefaultSubobject(TEXT("RootComponent"));
RootComponent = SphereComponent;
SphereComponent->InitSphereRadius(40.0f);
SphereComponent->SetCollisionProfileName(TEXT("Pawn"));

 

이 파트에서는 두 가지 문제로 진행이 방해받는다. 언리얼 튜토리얼 문서의 고질적인 문제로 CreateDefaultSubobject() 함수 문제와 USphereComponent가 정의되어 있지 않다고 하는 문제이다.

 

CreateDefaultSubobject() 함수 문제는 템플릿 매개변수에 값을 반환받는 변수에 맞는 타입을 넣어주면 해결된다.

 

USphereComponent* SphereComponent = CreateDefaultSubobject<USphereComponent>(TEXT("RootComponent"));

 

USphereComponent가 정의되지 않은 문제는 CollidingPawn.cpp의 전처리기에 "Engine/Classes/Components/SphereComponent.h"를 포함시켜주면 된다.

 

// Fill out your copyright notice in the Description page of Project Settings.

#include "CollidingPawn.h"
#include "Engine/Classes/Components/SphereComponent.h"

 

다음은, 구형의 스태틱 메시 컴포넌트를 만들어서 적절한 크기와 위치로 만들어서 루트 컴포넌트에 붙여준다.

 

UStaticMeshComponent* SphereVisual = CreateDefaultSubobject(TEXT("VisualRepresentation"));
SphereVisual->SetupAttachment(RootComponent);
static ConstructorHelpers::FObjectFinder SphereVisualAsset(TEXT("/Game/StarterContent/Shapes/Shape_Sphere.Shape_Sphere"));
if (SphereVisualAsset.Succeeded())
{
    SphereVisual->SetStaticMesh(SphereVisualAsset.Object);
    SphereVisual->SetRelativeLocation(FVector(0.0f, 0.0f, -40.0f));
    SphereVisual->SetWorldScale3D(FVector(0.8f));
}

 

UStaticMeshComponent 정의되지 않음 문제는 CollidingPawn.cpp에 "Engine/Classes/Components/StaticMeshComponent.h"를 포함시켜주면 해결된다.

 

#include "Engine/Classes/Components/StaticMeshComponent.h"

 

CreateDefaultSubobject() 함수 문제는 템플릿 매개변수에 UStaticMeshComponent 타입을 넣어주면 해결된다.

 

UStaticMeshComponent* SphereVisual = CreateDefaultSubobject<UStaticMeshComponent>(TEXT("VisualRepresentation"));

 

ConstructorHelpers가 정의되어 있지 않은 문제는 CollidingPawh.cpp에 "ConstructorHelpers.h"를 포함시켜주면 된다.

 

#include "ConstructorHelpers.h"

 

여기까지 해결하고 나면 ConstructorHelpers::FObjectFinder에서 [클래스 템플릿 "ConstructorHelpers::FObjectFinder"에 대한 인수 목록이 없습니다.] 라는 에러가 발생할 것이다. 이 문제를 해결하기 위해서 ConstructorHelpers::FObjectFinder의 원형을 살펴보면 ConstructorHelpers::FObjectFinder는 템플릿을 사용하는 것을 알 수 있다. 그렇다면 여기서 중요한 점은 템플릿 인자에 어떤 타입이 들어가야 하는가가 문제인데, 이 것은 SphereVisualAsset의 선언 2줄 아래를 보면 이 변수가 SetStaticMesh() 함수에 대입되는 것을 알 수 있다. 이 함수가 받는 매개변수의 타입은 UStaticMesh로서 SphereVisualAsset.Object는 UStaticMesh 타입임을 유추할 수 있다.

 

static ConstructorHelpers::FObjectFinder<UStaticMesh> SphereVisualAsset(TEXT("/Game/StarterContent/Shapes/Shape_Sphere.Shape_Sphere"));

 

이번엔 Particle System Component를 붙인다. 이 컴포넌트는 코드를 통해서 켜고 끄는 등의 제어를 할 수 있으며, 루트가 아닌 스태틱 메시에 붙어있으며 게임 플레이 도중에 더 잘보이게 하기 위해 메시의 정중앙이 아닌 약간 아래쪽에 오프셋되어 있다.

 

OurParticleSystem = CreateDefaultSubobject(TEXT("MovementParticles"));
OurParticleSystem->SetupAttachment(SphereVisual);
OurParticleSystem->bAutoActivate = false;
OurParticleSystem->SetRelativeLocation(FVector(-20.0f, 0.0f, 20.0f));
static ConstructorHelpers::FObjectFinder ParticleAsset(TEXT("/Game/StarterContent/Particles/P_Fire.P_Fire"));
if (ParticleAsset.Succeeded())
{
    OurParticleSystem->SetTemplate(ParticleAsset.Object);
}

 

CreateDefaultSubobject() 함수 문제는 템플릿 매개변수에 UParticleSystemComponent 타입을 넣어주면 해결된다.

 

OurParticleSystem = CreateDefaultSubobject<UParticleSystemComponent>(TEXT("MovementParticles"));

 

SetTamplate() 함수의 매개변수를 확인해본 결과 ParticleAsset의 템플릿 인자는 UParticleSystem 타입임을 알 수 있다.

 

static ConstructorHelpers::FObjectFinder<UParticleSystem> ParticleAsset(TEXT("/Game/StarterContent/Particles/P_Fire.P_Fire"));

 

Spring Arm Component는 폰보다 느린 가속/감속을 따라다니는 카메라에 적용시킬 수 있기 때문에, 카메라의 부드러운 부착점이 된다. 또한 카메라가 입체 오브젝트를 뚫고 지나가지 못하게 하는 기능을 내장하고 있어서, 삼인칭 게임에서 구석에서 벽을 등지는 상황에 유용하게 사용된다.

 

USpringArmComponent* SpringArm = CreateDefaultSubobject(TEXT("CameraAttachmentArm"));
SpringArm->SetupAttachment(RootComponent);
SpringArm->SetRelativeRotation(FRotator(-45.0f, 0.0f, 0.0f));
SpringArm->TargetArmLength = 400.0f;
SpringArm->bEnableCameraLag = true;
SpringArm->CameraLagSpeed = 3.0f;

 

USpringArmComponent가 정의되지 않은 문제는 CollidingPawn.cpp에 "Engine/Classes/GameFramework/SpringArmComponent.h"를 포함시켜주면 해결된다.

 

#include "Engine/Classes/GameFramework/SpringArmComponent.h"

 

CreateDefaultSubobject() 함수 문제는 템플릿 매개변수에 USpringArmComponent 타입을 넣어주면 해결된다.

 

USpringArmComponent* SpringArm = CreateDefaultSubobject<USpringArmComponent>(TEXT("CameraAttachmentArm"));

 

Camera Component를 생성해서 Spring Arm Component에 붙여준다. Spring Arm Component에는 소켓이 내장되어 있어서 베이스가 아닌 소켓에 카메라를 붙일 수 있다.

 

UCameraComponent* Camera = CreateDefaultSubobject(TEXT("ActualCamera"));
Camera->SetupAttachment(SpringArm, USpringArmComponent::SocketName);

 

UCameraComponent가 정의되지 않은 문제는 CollidingPawn.cpp에 "Engine/Classes/Camera/CameraComponent.h"를 포함시켜주면 해결된다.

 

#include "Engine/Classes/Camera/CameraComponent.h"

 

CreateDefaultSubobject() 함수 문제는 템플릿 매개변수에 UCameraComponent 타입을 넣어주면 해결된다.

 

UCameraComponent* Camera = CreateDefaultSubobject<UCameraComponent>(TEXT("ActualCamera"));

 

모든 컴포넌트를 붙인 뒤에는, 기본 플레이어가 이 폰을 조종하도록 설정해야 한다.

 

AutoPossessPlayer = EAutoReceiveInput::Player0;

 

위의 작업이 모두 끝났다면 언리얼 에디터로 돌아가자.

 

 

 

 

2. 입력 환경설정 및 폰 무브먼트 컴포넌트 생성(문서)

 

언리얼 에디터로 돌아왔다면, 프로젝트의 입력 세팅을 할 차례다. 이 세팅은 편집 드롭다운 메뉴의 프로젝트 세팅에서 찾을 수 있다.

 

 

 

프로젝트 세팅 창을 열었다면, 좌측의 엔진 섹션에서 입력을 찾아서 클릭한 뒤 아래와 같이 입력 매핑을 세팅하자.

 

 

 

이번에는 Pawn에서 모든 이동 처리를 하는 대신에, Movement Component를 만들어서 관리를 시키도록 해보자. 이 튜토리얼에서 Pawn Movement Component 클래스를 확장해서 사용한다.[각주:1] 파일 드롭다운 메뉴의 [새로운 C++ 클래스] 명령을 선택한다.

 

 

 

Pawn 클래스와 달리 Pawn Movement Component 클래스는 기본적으로 보이지 않기 때문에 모든 클래스 보기 옵션을 선택해야 한다.

 

 

 

검색창에 movement를 검색하면 찾고자 하는 클래스의 범위를 빠르게 좁힐 수 있다.

 

 

우리가 만든 Pawn 클래스의 이름이 "CollidingPawn"이기 때문에 이 Movement Component의 이름은 "CollidingPawnMovementComponent"로 정하자.

 

 

입력 환경설정에 대한 정의와 CollidingPawnMovementComponent의 생성으로 모두 끝마쳤으므로, 비주얼 스튜디오로 돌아가서 다시 코드 작업을 해야한다.

 

 

3. 폰 무브먼트 컴포넌트의 작동방식 코딩(문서)

 

비주얼 스튜디오로 돌아왔으면 이제 커스텀 폰 무브먼트 컴포넌트의 작동방식을 코딩하면 된다. Actor의 Tick() 함수 역할을 하는 TickComponent() 함수가 각 프레임 별로 어떻게 동작할지를 정의해야 한다. 우선은 부모 클래스의 TickComponent() 함수를 덮어쓰는 것으로 시작한다.

 

public:
    virtual void TickComponent(float DeltaTime, enum ELevelTick TickType, FActorComponentTickFunction* ThisTickFunction) override;

 

정의한 함수를 CollidingPawnMovementComponent.cpp에 구현한다.

 

void UCollidingPawnMovementComponent::TickComponent(float DeltaTime, enum ELevelTick TickType, FActorComponentTickFunction* ThisTickFunction)
{
    Super::TickComponent(DeltaTime, TickType, ThisTickFunction);

    if (!PawnOwner || !UpdatedComponent || ShouldSkipUpdate(DeltaTime))
    {
        return;
    }

    FVector DesiredMovementThisFrame = ConsumeInputVector().GetClampedToMaxSize(1.0f) * DeltaTime * 150.0f;
    if (!DesiredMovementThisFrame.IsNearlyZero())
    {
        FHitResult Hit;
        SafeMoveUpdatedComponent(DesiredMovementThisFrame, UpdatedComponent->GetComponentRotation(), true, Hit);

        if (Hit.IsValidBlockingHit())
        {
            SlideAlongSurface(DesiredMovementThisFrame, 1.0f - Hit.Time, Hit.Normal, Hit);
        }
    }
}

 

이 코드는 적합한 면을 미끄러져 다니며 월드를 부드럽게 움직이도록 폰을 이동시킨다. 폰에는 중력이 적용되지 않으며, 최대 속력은 초당 150 언리얼 유닛 으로 하드코딩되어 있다.

 

 

4. 폰과 컴포넌트 함께 사용하기(문서)

 

CollidingPawnMovementComponent를 CollidingPawn 클래스에서 사용하기 위해서 CollidingPawn.h의 클래스 정의 내에 다음 코드를 추가한다.

 

class UCollidingPawnMovementComponent* OurMovementComponent;

 

그리고 CollidingPawn.cpp에 "CollidingPawnMovementComponent.h"를 포함시킨다.

 

#include "CollidingPawnMovementComponent.h"

 

그 다음엔 CollidingPawn.cpp의 ACollidingPawn::ACollidingPawn() 생성자 함수 하단에서 CollidingPawnMovementComponent의 인스턴스를 생성하고 루트 컴포넌트를 업데이트하게 코드를 작성한다.

 

OurMovementComponent = CreateDefaultSubobject(TEXT("CustomMovementComponent"));
OurMovementComponent->UpdatedComponent = RootComponent;

 

CreateDefaultSubobject() 함수 문제는 템플릿 매개변수에 UCollidingPawnMovementComponet 타입을 넣어주면 해결된다.

 

OurMovementComponent = CreateDefaultSubobject<UCollidingPawnMovementComponent>(TEXT("CustomMovementComponent"));

 

이 컴포넌트는 다른 컴포넌트들과 달리 컴포넌트 계층구조에 붙일 필요가 없다. 다른 컴포넌트들의 경우에는 모두 씬 컴포넌트로 물리적인 위치가 필요한 것들이었지만, 이 컴포넌트는 물리적 오브젝트를 나타내는 것이 아니기 때문에, 물리적인 위치에 존재한다든가 다른 컴포넌트에 덧붙인다던가 하는 개념을 가지지 않는다.

 

Pawn 클래스에는 GetMovementComponent() 라는 함수가 있는데 이것은 엔진의 다른 클래스들이 현재 Pawn이 사용중인 Pawn Movement Component에 접근할 수 있도록 하는데 사용된다. 이 함수가 커스터마이징한 CollidingPawnMovementComponent를 반환하도록 하려면 이 함수를 덮어씌워야 한다. CollidingPawn.h에 다음 코드를 추가한다.

 

virtual UPawnMovementComponent* GetMovementComponent() const override;

 

그리고 CollidingPawn.cpp에 이 함수의 구현을 추가한다.

 

UPawnMovementComponent * ACollidingPawn::GetMovementComponent() const
{
    return OurMovementComponent;
}

 

Pawn Movement Component에 대한 구성이 끝났다면, Pawn이 받을 입력 처리에 대한 코드를 만들자. CollidingPawn.h에 함수 몇 개를 선언한다.

 

void MoveForward(float AxisValue);
void MoveRight(float AxisValue);
void Turn(float AxisValue);
void ParticleToggle();

 

그리고 CollidingPawn.cpp에 함수들을 구현한다.

 

void ACollidingPawn::MoveForward(float AxisValue)
{
    if (OurMovementComponent && OurMovementComponent->UpdatedComponent == RootComponent)
    {
        OurMovementComponent->AddInputVector(GetActorForwardVector() * AxisValue);
    }
}

void ACollidingPawn::MoveRight(float AxisValue)
{
    if (OurMovementComponent && OurMovementComponent->UpdatedComponent == RootComponent)
    {
        OurMovementComponent->AddInputVector(GetActorRightVector() * AxisValue);
    }
}

void ACollidingPawn::Turn(float AxisValue)
{
    FRotator NewRotation = GetActorRotation();
    NewRotation.Yaw += AxisValue;
    SetActorRotation(NewRotation);
}

void ACollidingPawn::ParticleToggle()
{
    if (OurParticleSystem && OurParticleSystem->Template)
    {
        OurParticleSystem->ToggleActive();
    }
}

 

남은 것은 함수들을 입력 이벤트에 바인딩하는 것이다. 다음 코드를 ACollidingPawn::SetupPlayerInputComponent() 함수에 추가하자.

 

InputComponent->BindAction("ParticleToggle", IE_Pressed, this, &ACollidingPawn::ParticleToggle);
InputComponent->BindAxis("MoveForward", this, &ACollidingPawn::MoveForward);
InputComponent->BindAxis("MoveRight", this, &ACollidingPawn::MoveRight);
InputComponent->BindAxis("Turn", this, &ACollidingPawn::Turn);

 

이로써 프로그래밍 작업은 모두 끝났다. 에디터로 돌아가서 컴파일을 진행하고 테스트해보자.

 

 

 

 

 


 

이번 섹션에서 배운 것

 

1. UParticleSystemComponent

 

UParticleSystemComponent* ParticleSystemComponent;

 

액터에 파티클 시스템을 덧붙일 수 있는 컴포넌트

 

ParticleSystemComponent->bAutoActivate = true;

 

파티클 시스템이 생성되자마자 자동으로 켜질지에 대한 변수

 

ParticleSystemComponent->SetTemplate(ParticleAsset.Object);

 

파티클 시스템 컴포넌트의 파티클을 설정하는 함수

 

ParticleSystemComponent->ToggleActive();

 

파티클을 켜고 끄는 함수

 

2. USphereComponent

 

USphereComponent* SphereComponent;

 

액터에 구형 충돌 물리 효과를 줄 수 있는 컴포넌트

 

SphereComponent->InitSphereRadius(40.0f);

 

스피어 컴포넌트의 반지름은 설정하는 함수

 

SphereComponent->SetCollisionProfileName(TEXT("Pawn"));

 

콜리전의 프로필을 설정하는 함수. [프로젝트 세팅>엔진>콜리전] 하단에 Preset을 열어보면 각 콜리전 프로필마다 어떤 물리 설정을 가지고 있는지 확인할 수 있다.

 

3. UStaticMeshComponent

 

UStaticMeshComponent* StaticMeshComponent;

 

월드에 렌더링되는 스태틱 메시를 가진 컴포넌트

 

StaticMeshComponent->SetStaticMesh(SphereVisualAsset.Object);

 

스태틱 메시 컴포넌트의 스태틱 메시를 설정하는 함수

 

4. ConstructorHelpers::FObjectFinder<T>

 

static ConstructorHelpers::FObjectFinder<T> Asset(TEXT("AssetPath"));

 

프로젝트에서 필요한 콘텐츠나 리소스, 에셋을 불러오는데 쓰이는 구조체

 

Asset.Succeeded();

 

에셋을 불러오는데 성공했는지를 반환하는 함수

 

Asset.Object;

 

불러온 에셋을 담고 있는 변수

 

5. USpringArmComponent

 

USpringArmComponent* SpringArmComponent;

 

부모 오브젝트와 자식 오브젝트 사이에 일정한 거리를 유지하게 도와주는 컴포넌트. 충돌이 있는 경우라면 유연하게 부모와 자식 사이의 거리를 좁혔다가 충돌이 사라지면 다시 원래대로 돌아가게하는 기능을 제공한다.

 

SpringArmComponent->TargetArmLength = 400.0f;

 

아무런 충돌이 없을 때, 스프링 암의 자연적인 거리를 정할 수 있는 변수

 

SpringArmComponent->bEnableCameraLag = true;

 

true인 경우, 카메라가 목표 위치보다 뒤떨어져서 따라가도록 한다.

 

SpringArmComponent->CameraLagSpeed = 3.0f;

 

bEnableCameraLag가 true인 경우, 카메라가 목표 위치에 도달하는 속도를 제어한다.

 

6. UPawnMovementComponent

 

Pawn의 움직임을 업데이트하는데 사용되는 컴포넌트

 

PawnOwner;

 

이 컴포넌트를 소유하고 있는 폰

 

UMovementComponent::UpdatedComponent;

 

UPawnMovementComponent의 부모 클래스인 UMovementComponent 클래스에 속하는 변수로 이 무브먼트 컴포넌트가 이동시키고 업데이트 해야할 컴포넌트

 

UMovementComponent::ShouldSkipUpdate(DeltaTime);

 

이동된 컴포넌트가 이동할 수 없거나 렌더링되지 않은 경우인지를 판별하여 알려주는 함수

 

ConsumeInputVector();

 

대기중인 입력을 반환하고 다시 0으로 설정하는 함수

 

SafeMoveUpdatedComponent(DesiredMovementThisFrame, UpdatedComponent->GetComponentRotation(), true, Hit);

 

언리얼 엔진 피직스를 이용해서 입체 장애물을 피해서 폰 무브먼트 컴포넌트를 이동시키는 함수

 

SlideAlongSurface(DesiredMovementThisFrame, 1.0f - Hit.Time, Hit.Normal, Hit);

 

컴포넌트가 이동하다가 충돌이 발생했을 때, 제자리에 멈추는 대신 충돌체의 표면을 타고 미끄러지듯이 이동하도록 도와주는 함수

 

AddInputVector(Vector);

 

매개변수로 받은 벡터를 누적 입력에 더하는 함수

 

7. FVector

 

FVector Vector;

 

언리얼 엔진에서 3D 상의 위치나, 속도를 나타내는데 쓰이는 구조체

 

Vector.GetClampedToMaxSize(Value);

 

길이가 Value인 이 벡터의 복사본을 만들어서 반환하는 함수

 

Vector.IsNearlyZero();

 

지정된 허용오차 내에서 벡터의 길이가 0에 근접하는지 확인하는 함수

 

8. FHitResult

 

FHitResult Hit;

 

충돌에 대한 정보를 담고 있는 구조체

 

Hit.Time;

 

Hit가 발생했을 때, TraceStart와 TraceEnd 사이의 충돌이 발생한 시간을 의미한다. (0.0~1.0)

 

Hit.Normal

 

충돌이 발생한 오브젝트의 월드 공간 상의 법선 방향

 

Hit.IsValidBlockingHit();

 

막히는 충돌이 발생했을 때 true를 반환하는 함수

 

9. AActor

 

GetActorRotation();

 

액터의 현재 회전을 반환하는 함수

 

SetActorRotation(FRotator());

 

액터의 회전을 설정하는 함수

 

 

  1. Pawn Movement Component 에는 흔한 물리 함수성에 도움이 되는 강력한 내장 기능이 몇 가지 들어있어, 여러가지 폰 유형에 무브먼트 코드를 공유하기가 좋다. 컴포넌트 를 사용하여 함수성을 분리시켜 놓는 것은 매우 좋은 습관인데, 프로젝트의 덩치가 커지면서 폰 도 복잡해 지기 때문이다. [본문으로]
반응형

제대로 따라가기 (1) C++ 프로그래밍 튜토리얼 :: 변수, 타이머, 이벤트 (타이머를 사용하는 액터 만들기)

 

작성버전 :: 4.20.3

 

언리얼 엔진은 다양한 기능을 제공하며, 그 기능에 대한 튜토리얼들이 문서에 존재한다. 언리얼 엔진을 공부하기 위해선 필수적으로 이러한 튜토리얼들을 첫걸음으로 따라가게 되는데, 언리얼 튜토리얼 문서는 가끔 따라가다보면 제대로 진행이 안되고 막히는 부분이 존재한다. 튜토리얼은 배우는 단계인데 아직 엔진에 전혀 숙련되지 못한 사람이 이런 문제에 부딪히면 생각보다 많은 시간은 잡아먹게 된다. 제대로 따라가기는 이런 튜토리얼 도중에 막히는 부분을 빠르게 해소하고 따라가기 위해 제작되었다.

 

튜토리얼대로 하면 문제가 발생해서 제대로 따라갈 수 없는 부분으로 동작이 가능하게 수정해야하는 부분은 빨간 블럭으로 표시되어 있다.

 

이번 튜토리얼에서 새로 배우게 되는 내용은 글 제일 끝에 "이번 섹션에서 배운 것"에 정리된다.

 

 

변수, 타이머, 이벤트 (1. 타이머를 사용하는 액터 만들기)

 

변수, 타이머, 이벤트 튜토리얼은 변수와 함수를 에디터에 노출시키는 법, 타이머를 사용하여 코드 실행을 지연 또는 반복시키는 법, 이벤트를 사용하여 액터 사이의 통신을 하는 법을 알려주는 튜토리얼이다.

 

Countdown 클래스 추가

 

 

 

우선 C++ 프로젝트에서 Actor 클래스를 상속받는 Countdown 클래스를 생성하도록 한다.

 

 

카운트다운 진행 상황을 보여주기 위한 기능 추가

 

클래스가 생성되었다면 비주얼 스튜디오를 열어서 생성된 클래스에 카운트다운할 시간 변수와 카운트다운 진행 상황을 보여줄 텍스트 렌더 컴포넌트와 함수를 추가해야 한다. 그 예시 코드는 다음과 같다.

#pragma once

#include "CoreMinimal.h"
#include "GameFramework/Actor.h"
#include "Countdown.generated.h"

UCLASS()
class CODEPRACTICE_API ACountdown : public AActor
{
    GENERATED_BODY()
   
public:   
    // Sets default values for this actor's properties
    ACountdown();

protected:
    // Called when the game starts or when spawned
    virtual void BeginPlay() override;

public:   
    // Called every frame
    virtual void Tick(float DeltaTime) override;

    int32 CountdownTime;
   
    UTextRenderComponent* CountdownText;

    void UpdateTimerDisplay();
};

 

추가된 것은 int32 CountdownTime, UTextRenderComponent* CountdownText, void UpdateTimerDisplay()이다.

 

바로 이 부분에서 막히는 사람들이 꽤 많을 거라고 생각한다.

 

 

바로 UTextRenderComponent가 정의되어 있지 않다고 신텍스 에러가 뜨기 때문이다. 이 문제를 해결하기 위해서는 UTextRenderComponent가 정의된 헤더를 포함시켜줘야 한다. UTextRenderComponent 클래스는 Engine/Classes/Components/TextRenderComponent.h 에 정의되어 있다.
 
하지만 이 TextRenderComponent.h를 추가해야 된다는 걸 깨달았다고 모든 문제가 해결되지는 않았다. 바로 헤더 포함 순서 문제가 남아있기 때문이다. 습관적으로 새로 추가하는 헤더를 가장 뒤에 추가하는 프로그래머들이 많을텐데 언리얼 C++프로그래밍에서는 헤더를 포함할 때 순서를 지켜야 한다. 새로 추가되는 헤더는 무조건 generated.h보다 위쪽에서 추가되어야 한다.
#pragma once

#include "CoreMinimal.h"
#include "GameFramework/Actor.h"

#include "Engine/Classes/Components/TextRenderComponent.h"
#include "Countdown.generated.h"

UCLASS()
class CODEPRACTICE_API ACountdown : public AActor
{
    GENERATED_BODY()
   
public:   
    // Sets default values for this actor's properties
    ACountdown();

protected:
    // Called when the game starts or when spawned
    virtual void BeginPlay() override;

public:   
    // Called every frame
    virtual void Tick(float DeltaTime) override;

    int32 CountdownTime;
   
    UTextRenderComponent* CountdownText;

    void UpdateTimerDisplay();
};

위의 예시 코드처럼 generated.h 위의 적당한 위치에 TextRenderComponent.h를 포함시켜주면 신텍스 에러가 발생하지 않는다.

 

그 다음 작업은 ACountdown 클래스의 생성자에서 액터의 프로퍼티 값들을 초기화해주는 것이다. 언리얼 엔진 문서에서 제공하는 예시코드는 다음과 같다.

// Sets default values
ACountdown::ACountdown()
{
     // Set this actor to call Tick() every frame.  You can turn this off to improve performance if you don't need it.
    PrimaryActorTick.bCanEverTick = false;

    CountdownText = CreateDefaultSubobject(TEXT("CountdownNumber"));
    CountdownText->SetHorizontalAlignment(EHTA_Center);
    CountdownText->SetWorldSize(150.0f);
    RootComponent = CountdownText;

    CountdownTime = 3;
}

 

이 클래스에서 Tick 기능은 사용하지 않기 때문에 bCanEverTick은 false로 하고 CountdownText에 TextRenderComponent를 생성해서 루트 컴포넌트에 붙여주고 CountdownTime을 3초로 설정한다.

 

하지만 코드가 과거버전 기준으로 만들어지고 문서가 업데이트되지 않은 문제인지, CreateDefaultSubobject()함수를 호출하는 부분에서 신텍스 에러가 발생한다. 그래서 CreateDefaultSubobject() 함수를 살펴보면 템플릿 함수임을 알 수 있다.

CountdownText = CreateDefaultSubobject<UTextRenderComponent>(TEXT("CountdownNumber"));

CountdownText 변수가 받아야하는 UTextRenderComponent를 템플릿 파라미터에 넣어주면 문제없이 신텍스 에러가 사라진다.

그 다음은 아까 정의해둔 UpdateTimerDisplay() 함수를 구현하는 것이다. 이 함수는 남은 시간을 TextRenderComponent에 업데이트하고 시간이 다되면 0을 표시하도록 한다.

void ACountdown::UpdateTimerDisplay()
{
    CountdownText->SetText(FString::FromInt(FMath::Max(CountdownTime, 0)));
}

 

 

 

 

 

타이머(Timer)

 

화면에 대한 준비를 끝냈다면 이번에는 시간을 체크할 타이머를 추가할 차례다. 타이머란 사용자가 정의한 시간마다 사용자가 지정한 동작이 실행되도록 하는 것이다. 이러한 동작은 물론 Tick() 함수에서 DeltaTime 값을 받아서 같은 동작을 수행하도록 할 수는 있지만, 사용자가 지정한 동작이 지속적으로 실행될 필요가 없이 특정한 순간에만 몇 번 실행되면 되거나 실행될 텀이 1초를 넘는 경우라면 Tick() 함수에서 시간을 재서 실행하는 것보다는 타이머를 이용하는 편이 좋다.

 

타이머에 대해 이해가 되었다면 이제 타이머에 필요한 멤버 변수와 함수들을 Countdown.h의 Countdown 클래스의 하단에 추가해보자.

void AdvanceTimer();

void CountdownHasFinished();

FTimerHandle CountdownTimerHandle;

 

AdvanceTimer() 함수는 Timer가 돌아가면서 호출될 함수이다.

 

CountdownHasFinished() 타이머가 사용자가 의도한 만큼 돌아간 뒤의 처리를 위한 함수이다.

 

차량에 달린 핸들이 차량의 이동 방향을 컨트롤하기 위한 것이듯, FTimerHandle 역시 타이머를 컨트롤하기 위한 구조체로서 CountdownTimerHandle 변수는 카운트다운이 끝났을 때, 타이머가 계속해서 돌아가지 않도록 종료하기 위해서 필요하다.

 

AdvanceTimer() 함수와 CountdownHasFinished() 함수를 모두 정의했다면 이번에는 각 함수를 구현해보자.

void ACountdown::AdvanceTimer()
{
    --CountdownTime;
    UpdateTimerDisplay();
    if (CountdownTime < 1)
    {

        // 카운트다운이 완료되면 타이머를 중지
        GetWorldTimerManager().ClearTimer(CountdownTimerHandle);
        CountdownHasFinished();
    }
}

 

AdvanceTimer() 함수의 예시 코드는 위와 같은데 이 함수를 구현하면서 문제가 다시 발생한다. 이번에는 GetWorldTimerManager() 함수에서 ClearTimer() 함수를 호출할 때 "불완전한 형식은 사용할 수 없습니다." (E0070 :: Incomplete type is not allowed.) 라는 에러가 발생한다.

 

이 문제는 아래의 예시 코드와 같이 Countdown.cpp의 상단에 TimerManager.h를 포함시켜주면 해결된다.

// Fill out your copyright notice in the Description page of Project Settings.

#include "Countdown.h"
#include "TimerManager.h"

 

CountdownHasFinished() 함수의 코드는 다음과 같다.

void ACountdown::CountdownHasFinished()
{
    CountdownText->SetText(TEXT("Go!"));
}

 

다음 작업은 BeginPlay() 함수에서 텍스트 표시를 초기화하고 타이머를 동작시키는 것이다.

void ACountdown::BeginPlay()
{
    Super::BeginPlay();
   
    UpdateTimerDisplay();
    GetWorldTimerManager().SetTimer(CountdownTimerHandle, this, &ACountdown::AdvanceTimer, 1.0f, true);
}

 

 

에디터 컴파일과 레벨 배치 그리고 테스트 실행

 

 

 

모든 코드 작업이 끝났다면 이제 언리얼 에디터로 돌아가서 컴파일 버튼을 눌러보자. 

 

 

 

만약 컴파일 에러 없이 컴파일에 성공했다면 위의 이미지와 같이 컴파일 완료라고 에디터의 오른쪽 하단에 출력될 것이다.

 

 

 

컴파일이 완료된 다음에 우리가 작성한 Countdown 클래스를 레벨 에디터에 드래그 앤 드롭해서 배치할 수 있다.

 

 

 

배치를 완료했다면 플레이 버튼을 눌러서 실행해보자. 그러면 화면의 Text 글자가 3, 2, 1, Go!로 바뀌는 것을 확인할 수 있다.

 

 

 

 

 

 


 

 

이번 섹션에서 배운 것

 

 

1. CreateDefaultSubobject<T>() (언리얼 엔진 문서)

 

UObject 클래스를 상속받는 모든 클래스에서 사용가능한 함수이다. 하위 오브젝트나 컴포넌트를 생성할 때 사용되는 함수로 2번의 UTextRenderComponent를 생성하는 예시와 같이 사용된다. 이 함수는 T의 포인터(T*) 타입을 반환한다.

 

 

2. UTextRenderComponent(언리얼 엔진 문서)

 

UTextRenderComponent* TextRenderComponent;

 

설정된 텍스트를 3D 공간 상에 렌더링하는 컴포넌트이다. 글자 색, 크기, 폰트, 정렬 등을 설정할 수 있으며 액터 등에 컴포넌트로 덧붙여서 사용할 수 있다. 이 컴포넌트를 사용하기 위해서는 "Engine/Classes/Components/TextRenderComponent.h"를 포함해야 한다.

 

TextRenderComponent = CreateDefaultSubobject<UTextRenderComponent>(TEXT("TextRenderComponent"));

 

코드 상에서 UTextRenderComponent를 생성하는 방법은 위와 같다.

 

TextRenderComponent->SetHorizontalAlignment(EHTA_Center);

 

렌더링되는 텍스트의 수평 정렬을 설정하는 함수이다. 정렬 방식은 EHTA_Center, EHTA_Left, EHTA_Right가 있다.

 

TextRenderComponent->SetWorldSize(100.0f);

 

렌더링되는 텍스트의 월드에서의 크기를 설정하는 함수이다.

 

TextRenderComponent->SetText(TEXT("TEXT"));

 

렌더링되는 텍스트의 문자열 내용을 설정하는 함수이다.

 

 

3. Timer

 

타이머는 사용자가 정의한 시간마다 사용자가 지정한 동작이 실행되도록 만든다.

 

1) FTimerHandle (언리얼 엔진 문서)

 

FTimerHandle TimerHandle;

 

FTimerHandle은 타이머를 구별할 수 있는 유일한 핸들이다. 타이머를 생성하는 함수는 타이머를 생성할 때, 타이머의 핸들을 돌려주는데, 이 핸들을 가지고 있어야 생성한 타이머를 중지시킬 수 있다.

 

2) GetWorldTimerManager() (언리얼 엔진 문서)

 

AActor 클래스를 상속받는 모든 클래스에서 호출가능한 함수이다. 월드 타이머 매니저를 반환한다. GetWorldTimerManager()의 호출이 정상적으로 되지 않을 경우 "TimerManager.h"를 포함시키면 된다.

 

GetWorldTimerManager().SetTimer(TimerHandle, this, &ACountdown::AdvenceTimer, 1.0f, true);

 

SetTimer() 함수는 타이머를 생성하고 시작시키는 함수로 여러가지 오버로드가 존재하지만 우선은 위의 오버로드 형식만 살펴보자.

 

첫 번째 매개변수는 지금 생성되는 타이머의 핸들이다. 위에서 설명했듯이 이 핸들을 가지고 있어야 나중에 타이머를 종료할 수 있다.

 

두 번째 매개변수는 타이머 함수를 호출하는 오브젝트이다.

 

세 번째 매개변수는 타이머가 발동할 때마다 호출될 함수이다.

 

네 번째 매개변수는 타이머가 호출될 시간이다. 만약 값을 1로 두면 1초에 한 번씩 함수가 호출된다.

 

다섯 번째 매개변수는 타이머의 반복 여부이다. 만약 값이 false라면 타이머는 반복되지 않고 정해진 시간에 한 번만 호출된다.

 

GetWorldTimerManager().ClearTimer(TimerHandle);

 

ClearTimer() 함수는 돌아가고 있는 타이머를 중지시키고 해당 핸들을 무효화시키는 함수이다.

반응형
  1. 지나갑니다. 2018.12.01 23:08

    오타있어서 말씀드립니다.

    함수명 AdvanceTimer로 변경 필요합니다.

  2. 왕초보진화중 2019.12.23 14:48

    막막 했는데 많은 도움이 되었습니다. 감사합니다.

  3. 가는길 2020.06.14 13:10

    블루프린트쓰다가
    cpp로 작성하고 싶어 배우는중에
    큰 도움받고 갑니다

악마의 문법, goto

프로그래밍을 공부하면 여러가지 프로그래밍 문법과 기능과 그것을 다루는 기술들을 배우게 된다. 그렇게 배우는 문법들의 중의 하나가 바로 goto 인데, 이 goto 문에 대해서는 여러 프로그래머들의 부정적인 시각이 강하다. 오죽하면 이 goto 문을 알려주고 나서 하는 제일 첫 마디가 "가급적 사용하지 말라"이겠는가?


이 goto 문의 사용을 권장하지 않는 이유는 하나다. 코드의 가독성을 심각하게 해친다는 것이다. 물론 goto를 사용한다고 해서 무조건 코드의 가독성을 해치는 것은 아니지만 다음처럼 사용하게 된다면 많은 문제가 발생하게 될 것이다 :


void f()
{
    int i = 10;

    if (i > 100)
    {
        I100:
        if (i < 200)
        {
            goto I200;
        }
        else if (i < 300)
        {
            goto I300;
        }
    }
    goto I100;

I200:
    cout << 1 << endl;
    return;
I300:
    cout << 2 << endl;
    return;
}


위의 예시처럼 코드 이곳저곳을 뛰어넘게 되는 goto 문이 많을 경우나 goto I100; 부분처럼 조건에 맞지 않는 상황에서 조건문 안으로 강제 진입하게 만드는 goto 문이 있을 경우는 심각한 문제가 된다. 다른 작업자가 작업하게 되거나 작성자 자신이 재작업할 때, 코드의 흐름을 읽어내기가 어려워지고 조건문과 코드를 신뢰할 수 없게 될 것이다.


그렇다면 적절한 goto 문의 사용법이란 무엇인가? 사실 모든 프로그램은 goto 문 없이도 작성이 가능하다. 그렇기 때문에 goto문을 사용하지 않도록 권장하는 것이기도 하다. 하지만 이 goto 문 역시 적절하게 사용하면 기존의 방식보다 편하게 코드를 작성이 가능하다.


그 첫 번째 예시는 2중 이상의 반복문에서 탈출할 때이다. 반복문에서 탈출할 때 주로 사용되는 문법은 break인데, 이 break는 한 번에 단 하나의 반복문만을 탈출할 수 있다. 그래서 break로 2중 이상의 반복문을 탈출할 때는 다음과 같이 코드를 작성해야 한다 :


int main()
{
    bool isBreak = false;
    for (int i = 0; i < 10; i++)
    {
        for (int j = 0; i < 10; j++)
        {
            if (/*탈출조건*/)
            {
                isBreak = true;
                break;
            }
        }
        if (isBreak)
            break;
    }
}


위의 예제처럼 goto 문을 사용하지 않아도 2중 반복문을 탈출할 수 있지만, 하나의 논리 변수를 추가로 사용하고 분기문 역시 추가로 사용해야 한다. 그리고 이것은 반복문의 깊이가 깊어질 수록 사용되는 분기문의 숫자 역시 늘어나게 될 것이다(흔하지 않은 경우이기는 하다). 하지만 다음과 같이 goto 문을 사용하면 논리 변수와 반복문을 추가로 사용하지 않고도 단번에 다중 반복문을 탈출할 수 있게 된다 :


int main()
{
    for (int i = 0; i < 10; i++)
    {
        for (int j = 0; i < 10; j++)
        {
            if (/*탈출조건*/)
            {
                goto BREAK;
            }
        }
    }
BREAK:
}



두 번째 예시는 재입력 처리이다. 만약 1-3 값 만을 입력해야 하는 프로그램이 있다면,  그 이외의 값이 들어온다면 사용자가 값을 다시 입력하도록 프로그래밍해야할 것이다. 여기에 사용되는 일반적인 방법은 do-while 문을 사용하는 방법과 무한 loop에 진입시킨 이후에 옳은 값을 입력했다면 루프에서 탈출시키는 방법이다.


int main()
{
    int i = 0;

    // do-while 문을 사용하는 방법
    do
    {
        cout << "값을 입력하세요(1~3)(do-while) :: ";
        cin >> i;
    } while (i < 1 || i > 3);

    // 무한 loop를 사용하는 방법
    while (true)
    {
        cout << "값을 입력하세요(1~3)(무한루프) :: ";
        cin >> i;
        if (i > 0 && i < 4)break;
    }
}


이 경우에도 충분히 goto 문이 사용될 수 있다.


int main()
{
    int i = 0;

WRONGINPUT:
    cout << "값을 입력하세요(1~3)(무한루프) :: ";
    cin >> i;
    if (i < 1 || i > 3)
        goto WRONGINPUT;
}


이렇듯 충분히 가독성을 해치지 않는 선을 지키면서도 goto 문을 사용할 수 있다. 프로그래밍을 하면서 중요한 점은 바로 이것이다. 프로그래밍에 필요한 모든 것을 최대한 활용하되 과하게 사용하지 말고 적절한 위치에 적절하게 사용하라는 것이다. 그것만으로도 코드는 충분히 깔끔해지고 작업 효율성이 상승하게 될 것이다.

반응형

static_assert

프로그래밍을 하는 과정에서 버그의 발생과 디버그는 필연적이다. 아무리 설계가 완벽하다고 해도, 코드의 작성자가 인간인 이상 실수로 인하여 버그는 발생하기 때문에 코딩 이후에는 반드시 테스트와 디버그가 이루어져야 한다.


게임 프로그래밍의 경우에는 예외처리(Exception Handling)을 성능 상의 문제로 잘 사용하지 않고 개발 도중에 버그를 잡기 위해서 assert를 사용하는 경우가 많다. assert는 <assert.h> 헤더를 포함시키면 사용할 수 있으며 어떤 식이 참인지 거짓인지 판별해주고 그 식이 거짓이라면 에러 메시지 박스를 띄우고 어느 cpp의 몇 번째 줄에서 중단되었는지 알려주고 프로그램이 종료된다. 이 기능은 디버그 빌드에서만 작동하고 릴리즈 빌드에서는 작동하지 않는다.


기존의 assert 사용 예시

#include <assert.h>


class Player

{

// 플레이어에 대해 정의된 클래스

// ...

}


class GameManager

{

// 게임을 관리하는 매니저

// ...


static Player* GetPlayer(/*특정조건*/)

{

// 특정 조건에 맞는 플레이어를 반환한다.

// 만약 조건에 맞는 플레이어가 없다면 nullptr을 반환

}

}


int main()

{

Player * player = GetPlayer();

// 만약 player가 nullptr이라면 프로그램은 정지되고 에러 메시지 박스를 출력될 것이다.

assert(player != nullptr);

}


C++ 11에 들어서 새로 도입된 static_assert라는 것이 있는데 이것은 별도의 헤더를 포함시키지 않고도 사용할 수 있다. 이 static_assert가 기존의 assert와 다른 점은 기존의 assert는 런타임 도중에만 작동해서 해당 코드가 실행되기 전에는 에러가 발생하는지 알기 어려운 반면에 static_assert는 컴파일 타임에 발생하기 때문에 문제가 발생할 부분이라면 해당 코드가 작동하지 않을 확률이 높다고 하더라도 반드시 에러를 잡아낼 수 있다는 것이다. 다만 컴파일 타임에만 작동하는 static_assert의 특성 상 컴파일 타임에 결정되지 않았고 런타임이 되지 않으면 알 수 없는 부분에는 사용할 수 없다. 예를 들자면 위의 assert 예시 코드에서처럼 player 객체가 nullptr인지는 런타임 동안 GetPlayer()함수를 지나봐야만 결정되기 때문에 컴파일 타임에는 알 수 없어서 저런 곳에는 static_assert를 사용할 수 없다.



static_assert 사용 예시

/* 기존에 사용되던 구조체 a

struct a

{

int i

}

//*/


//* 수정된 구조체 a

struct a

{

int i;

float f;

}

//*/


int main()

{

static_assert(sizeof(a) == 8, "Old struct a used.");

}


위의 예시처럼 구조체 a가 수정된 이후에 실수로 이전 구조체를 사용하고 있는지 컴파일 타임에 확인해서 발생할 버그를 미리 막을 수 있게 된다. 다음은 각 상황에서 static_assert의 반응이다 :


실수로 이전의 구조체를 사용한 경우 컴파일 에러를 발생시킨다.


구조체를 제대로 사용하면 컴파일 에러를 발생시키지 않는다.


static_assert를 사용할 때, 주의할 점은 유니코드와 한글을 지원하지 않기 때문에 에러 메시지를 작성할 때, 멀티바이트 영어로 작성하는게 좋다.


반응형

'C++' 카테고리의 다른 글

[C++11] enum class  (1) 2017.07.17
[C++ 11] static_assert  (0) 2017.05.23
[C++ 11] Auto Vectorization  (1) 2016.11.01
[C++ 11] Range-Based For  (0) 2016.11.01
[C++ 11] Scoped Lock  (0) 2016.11.01

Swap chain의 특성을 담고 있는 구조체.

 

typedef struct DXGI_SWAP_CHAIN_DESC
{
    DXGI_MODE_DESC BufferDesc;      // 생성하고자 하는 back buffer의 속성들을 서술하는 구조체
    DXGI_SAMPLE_DESC SampleDesc;    // Multisampling을 위해 추출할 표본 개수와 품질 수준을 서술하는 구조체
    DXGI_USAGE BufferUsage;         // 버퍼의 용도를 서술하는 구조체
    UINT BufferCount;               // Swap chain에서 사용할 back buffer의 개수.(이중버퍼링 : 1개, 삼중버퍼링 : 2개)
    HWND OutputWindow;              // 렌더링 결과를 표시할 윈도우 창의 핸들
    BOOL Windowed;                  // 창 모드를 원하면 true, 전체화면 모드를 원하면 false
    DXGI_SWAP_EFFECT SwapEffect;    // Swap 효과를 서술하는 구조체
    UINT Flags;                     // 추가적인 플래그
} DXGI_SWAP_CHAIN_DESC;
 
typedef struct DXGI_MODE_DESC
{
    UINT Width;                                 // 원하는 back buffer 너비
    UINT Height;                                // 원하는 back buffer 높이
    DXGI_RATIONAL RefreshRate                   // 디스플레이 모드 갱신율
    DXGI_FORMAT Format;                         // back buffer 픽셀 형식
    DXGI_MODE_SCANLINE_ORDER ScanlineOrdering;  // 디스플레이 스캔라인 모드
    DXGI_MODE_SCALING Scaling;                  // 디스플레이 비례 모드
} DXGI_MODE_DESC;
 
DXGI_SWAP_CHAIN_DESC::DXGI_USAGE    // 버퍼의 용도
{
    DXGI_USAGE_SHADER_INPUT         // 셰이더 입력
    DXGI_USAGE_RENDER_TARGET_OUTPUT // 렌더 타겟 출력으로 surface 또는 자원을 사용
    DXGI_USAGE_BACK_BUFFER          // surface 또는 자원을 back buffer로 사용.
                                    //swap chain을 생성할 때 DXGI_USAGE_BACK_BUFFER을 전달할 필요는 없다.
    DXGI_USAGE_SHARED               // surface 또는 자원을 공유
    DXGI_USAGE_READ_ONLY            // surface 또는 자원을 읽기 전용으로 사용
    DXGI_USAGE_DISCARD_ON_PRESENT   // DXGI 모듈에서 내부적으로 사용
    DXGI_USAGE_UNORDERED_ACCESS     // surface 또는 자원에 무순서 접근을 위해 사용
}

 

DXGI_SWAP_EFFECT

DXGI_SWAP_CHAIN_FLAG

DXGI_MODE_SCANLINE_ORDER

DXGI_MODE_SCALING

 

위에 네 가지 열거형에 대해서는 딱히 알기 쉽게 번역되어 있는 내용이 없다.

나중에 시간이 날때 번역해서 올리자.

반응형

'Direct3D > Direct3D MSDN 번역' 카테고리의 다른 글

[Direct3D 11] DXGI_SWAP_EFFECT enumeration  (0) 2016.11.01
[Direct3D 11] DXGI_SWAP_CHAIN_DESC  (0) 2016.11.01

+ Recent posts