언리얼 엔진에서 Player Controller는 Pawn과 그것을 제어하려는 사람 사이의 인터페이스로서, 플레이어의 의지를 대변하는 클래스이다. Player Controller는 Controller 클래스를 상속받는데, Possess() 함수로 Pawn의 제어권을 획득하고, UnPossess() 함수로 제어권을 포기한다.
이러한 설명이 언리얼 문서 상에서의 Player Controller에 대한 내용의 대부분이고, 실제적인 C++ 코드에서의 사용법은 레퍼런스에서 찾아서 멤버 변수와 함수 등을 직접 찾아서 읽어야 하는 불편함이 있기 때문에 입문자는 Player Controller의 사용법을 제대로 익히기가 쉽지 않다.
그럼 이제부터 Player Controller의 기본적인 기능과 사용법에 대해서 알아보도록 하자.
마우스 인터페이스
플레이어 컨트롤러가 기본적으로 제공하는 기능 중에는 마우스 인터페이스에 관련된 기능이 있다.
플레이어 컨트롤러를 상속받는 블루프린트 클래스를 만들고 에디터를 열어보면 디테일 패널의 Mouse Interface 카테고리에서 플레이어 컨트롤러가 기본적으로 제공하는 마우스 인터페이스와 관련된 기능들을 한눈에 볼 수 있다. 디테일 패널에서 보이는 것들은 아주 기본적인 내용으로 이보다 심도깊은 기능에 대해서 배우고자 한다면 APlayerController 클래스의 언리얼 레퍼런스를 확인하는게 좋다.
C++ 코드 상에서는 UPlayerController 클래스의 위와 같은 프로퍼티들을 통해서 옵션을 바꿀 수 있다.
Show Mouse Cursor
Show Mouse Cursor 옵션은 말 그대로 게임 도중에 마우스 커서를 보이게 할 것인가에 대한 옵션이다. 예를 들어보자면, 전통적인 PC 플랫폼에서의 탑다운뷰 RPG 게임은 캐릭터를 이동시킬 때 주로 마우스를 이용한다. 때문에 커서가 항상 보이도록 이 옵션을 true로 해줘야 한다. 하지만 FPS 게임은 화면 중앙의 크로스헤어에 적을 일치시키고 공격하는 방식이기 때문에 커서가 보일 필요가 없다. 혹은 위 두 가지 사례가 융합된 장르들은 전투나 이동 같은 플레이 중일 때는 커서를 비활성화시킨 상태로 크로스헤어를 사용하고, 인벤토리나 지도를 열면 커서를 활성화시키는 방식으로 사용하기도 한다.
bShowMouseCursor = true;
bShowMouseCursor = false;
C++ 코드 상에서는 UPlayerController 클래스의 bShowMouseCursor 프로퍼티를 통해서 옵션을 바꿀 수 있다.
Event
그 다음 네 가지 옵션은 월드에 배치된 액터/컴포넌트가 마우스나 터치에 대해서 이벤트를 발생시킬지에 대한 프로퍼티이다.
Click Event / Touch Event는 액터/컴포넌트에 대한 클릭/터치 이벤트이고, Mouse Over Event / Touch Over Event는 액터/컴포넌트에 커서나 터치가 올라가 있는 상태에 대한 이벤트이다.
간단하게 예시를 보자면 언리얼 프로젝트에 테스트용 C++ 클래스를 하나 만들고 NotifyActorOnClicked() 함수를 덮어씌워서 다음과 같이 구현하고 프로젝트를 다시 빌드한다.
그리고 새 Player Controller를 하나 만들어서 Show Mouse Cursor와 Enable Click Event를 true로 설정한 뒤, 프로젝트 설정의 맵 & 모드에서 기본 플레이어 컨트롤러로 설정한다.
그 다음 아까 만든 액터를 레벨에 배치하고 클릭할 수 있게 스태틱 메시 컴포넌트를 추가해주자.
레벨 에디터에서 플레이 버튼을 누르고 추가한 액터를 클릭해보면 출력 로그 패널에서 "NotifyActorOnClicked"라고 출력되는 것을 확인할 수 있다.
액터나 컴포넌트에 Click Event를 추가했더라도 Player Controller에서 Enable Click Event를 false로 설정했다면, NotifyActorOnClicked() 이벤트는 호출되지 않는다.
Default Mouse Cursor
Default Mouse Cursor 프로퍼티는 기본적인 마우스 커서 모양을 정하는 프로퍼티이다. 커서 모양의 종류는 언리얼 문서에서 확인할 수 있다.
DefaultMouseCursor = EMouseCursor::Default;
C++ 코드 상에서는 UPlayerController 클래스의 DefaultMouseCursor 프로퍼티를 통해서 옵션을 바꿀 수 있다.
Default Click Trace Channel
Default Click Trace Channel은 클릭 이벤트가 발생했을 때, 플레이어가 클릭한 대상을 3D 공간에서 찾기 위해서 트레이스를 통해 광선 같은 개념의 선을 쏘는데 어떤 채널에 속하는 객체가 맞았을 때 찾았다고 판정할 지를 정하는 프로퍼티이다. "Visibility"가 기본값으로 되어 있는데, 이는 화면에 보이는 객체가 맞으면 무조건 맞았다고 판정한다는 의미이다.
이 값의 종류에는 Visibility 이 외에도, Pawn만 찾아내는 Pawn, 월드에 스태틱으로 배치된 액터만 찾아내는 WorldStatic 등이 있다.
C++ 코드 상에서는 UPlayerController 클래스의 DefaultClickTraceChannel 프로퍼티를 통해서 옵션을 바꿀 수 있다.
Trace Distance
Trace Distance 프로퍼티는 클릭 이벤트 등이 발생했을 때, 화면으로부터 얼마나 멀리 떨어진 지점까지 대상을 탐색할 것인가에 대한 것이다.
HitResultTraceDistance = 10000.0f;
그 외의 유용한 마우스 관련 함수
1. GetHitResultUnderCursor()
GetHitResultUnderCursor() 함수는 함수 이름 그대로 화면에서 마우스 커서 위치에 트레이스를 쏴서 그 결과를 가져오는 함수이다. 일반적인 함수의 사용법은 아래와 같으며, 이 함수는 레벨에 배치된 오브젝트를 선택하거나, RPG 식으로 클릭한 위치로 캐릭터를 이동시킬 때, 유용하게 사용할 수 있다.
플레이어 컨트롤러는 액터 클래스에서 상속받는 Tick() 함수 외에 PlayerTick() 이라는 별도의 틱 함수를 하나 더 가진다. 일반 Tick() 함수는 어디서나 작동하는 반면에, PlayerTick() 함수는 Player Controller에 PlayerInput 객체가 있는 경우에만 호출된다. 따라서 로컬로 제어되는 Player Controller에서만 플레이어 틱이 호출된다. 이 말인 즉슨, 만약 멀티플레이 게임이라면 자기 자신의 플레이어 컨트롤러에서만 플레이어 틱이 호출된다는 것이다.
플레이어 컨트롤러는 기본적으로 자신이 빙의(Possess)하여 컨트롤하는 폰을 레퍼런스로 가지고 있게 된다. 일반적으로 프로젝트 세팅의 맵 & 모드나 월드 세팅에서 디폴트 폰을 None이 아닌 특정 폰으로 설정해둔 상태라면, 게임이 시작되면 폰이 생성되고 플레이어 컨트롤러는 생성된 폰에 자동으로 빙의된다.
디폴트 폰이 None이어서 자동으로 빙의되는 상황이 아니라면, Possess() 함수를 이용하여 빙의하고자 하는 폰에 컨트롤러를 빙의시키면된다.
Possess(TargetPawn);
이 반대의 경우로 현재 빙의하고 있는 폰에서 제어권을 포기하고 탈출하려고 한다면 UnPossess() 함수를 사용하면 된다.
UnPossess();
컨트롤러가 빙의 중인 폰을 가져와서 사용하기 위해서는 다음과 같이 GetPawn() 함수를 사용하면 된다.
APawn* MyPawn = GetPawn();
만약에 컨트롤러가 현재 컨트롤 중인 폰이 없는 상태라면 GetPawn() 함수는 nullptr를 반환한다.
그리고 에디터로 돌아가서 콘텐츠 브라우저 창에서 Bluprints라는 이름의 새 폴더를 만든 뒤, C++ AnimTestCharacter 클래스에 우클릭하여 AnimTestCharacter 기반 블루프린트 클래스 생성을 클릭하고, BP_AnimTestCharacter 라는 이름으로 블루프린트 클래스를 생성한다.
이어지는 과정을 수행하기 전에, 캐릭터 모델링을 다운받아 프로젝트에 임포트한다.
TestChar.fbx를 프로젝트에 임포트했다면, BP_AnimTestCharacter를 더블클릭해서 블루프린트 에디터를 열고 컴포넌트 패널에서 Mesh 컴포넌트를 선택한다.
스켈레탈 메시를 TestChar로 설정하고 나서, 뷰포트를 통해 확인하면 다음과 같이 캡슐 콜라이더 크기와도 맞지 않고 방향도 다른 것을 알 수 있다.
이것을 올바르게 맞추기 위해, 디테일 패널의 트랜스폼 섹션에서 위치 {0.0, 0.0, -90.0}, 회전 {0.0, 0.0, 90.0}, 스케일 {3.0, 3.0, 3.0}으로 설정한다. 설정이 모두 끝났다면 블루프린트를 컴파일하고 저장한 뒤, 블루프린트 에디터를 닫는다.
블루프린트를 레벨 에디터에 끌어놓아 배치한다. 그리고 플레이 버튼을 눌러서 PIE 모드로 들어가면 캐릭터에 메시가 추가된 것과 전에 설정한 이동과 카메라 제어가 정상적으로 되는 것을 확인할 수 있다.
하지만 아직 문제는 남아있다. 카메라가 캐릭터의 몸통 한가운데 박혀있기 때문에, 캐릭터의 움직임이 제대로 보이지 않고 부자연스럽다. 이를 해소하기 위해서 새로운 카메라를 배치하고 TPS처럼 구성해보자.
비주얼 스튜디오로 돌아가서 AnimTestCharacter.h에 다음 멤버 변수를 추가한다.
UPROPERTY(VisibleAnywhere)
class USpringArmComponent* TPSCameraSpringArmComponent;
UPROPERTY(VisibleAnywhere)
class UCameraComponent* TPSCameraComponent;
그리고 AnimTestCharacter.cpp에서 몇 가지 기능들을 사용하기 위해서 전처리기 리스트에 다음 코드를 추가한다.
변경사항을 저장하고 프로젝트를 빌드한 뒤, 에디터로 돌아가서 플레이를 해보면 전처럼 카메라가 캐릭터의 몸 속에 있지 않고, 캐릭터의 등 뒤에 적당히 떨어진 거리에서 카메라가 있음을 확인할 수 있다.
이제 캐릭터를 추가했고, 그 캐릭터의 애니메이션을 제대로 볼 수 있는 뷰를 완성했으니, 본격적으로 애니메이션을 추가해보자.
캐릭터 애니메이션 작업
캐릭터 애니메이션 파트를 시작하기 전에 필요한 캐릭터 애니메이션을 다운받자.
애니메이션을 다운받고 압축을 해제하였다면, 콘텐츠 브라우저에서 Animations 폴더를 만들고 파일 창에 우클릭하여 /Game/Animations 에 임포트를 선택하여, TestChar_Idle, TestChar_Move를 선택한다.
FBX 임포트 옵션 창이 뜨면 Import Mesh 프로퍼티의 체크를 해제하고 Mesh 섹션의 Skeleton 프로퍼티에 TestChar_Skeleton을 설정해주고 모두 임포트를 선택한다.(Import Mesh 프로퍼티의 체크를 해제하는 경우는 모델링과 애니메이션이 모두 있는데, 그 중에 애니메이션만 임포트하려고 할 때이다.)
콘텐츠 브라우저 패널에서 신규 추가 버튼을 클릭하고 애니메이션/애니메이션 블루프린트를 선택한다.
부모 클래스로는 AnimInstance를 선택하고 타깃 스켈레톤은 TestChar_Skeleton을 선택한다. 애니메이션 블루 프린트의 이름은 TestChar_AnimBP로 하자.
생성한 애니메이션 블루프린트를 더블클릭해서 애니메이션 블루프린트 에디터를 연다. 그리고 내 블루프린트 패널에서 Boolean 타입의 IsRunning 변수를 추가한다.
변수를 추가한 뒤에는, 애니메이션 블루프린트의 이벤트 그래프로 이동해 다음과 같이 구성한다.
이 다음엔 내 블루프린트 패널에서 애님 그래프 더블클릭해서 애님 그래프를 열고 우클릭하여 컨텍스트 메뉴를 열어 스테이트 머신을 추가한다.
새로 추가한 스테이트 머신의 이름을 TestChar State Machine으로 변경하고 최종 애니메이션 포즈와 연결한다.
예를 들어, 데미지 타입을 지정할 수 있는 발사체 클래스를 만든다고 가정했을 때, 다음 코드처럼 UClass 타입의 UPROPERTY를 만들어서 에디터에 노출시킨 뒤, 에디터 작업자에게 이 프로퍼티에 UDamageType의 파생 클래스만 할당해 달라고 한다면 어떻게 될까?
블루프린트 에디터의 디테일 패널에서 Damage Type 프로퍼티에 클래스를 할당하기 위해서 드롭다운 메뉴를 확장해보면 클래스 타입에 상관없이 모든 클래스가 표시되고 있음을 볼 수 있다. 이런 상황에서 UDamageType의 파생 클래스만 할당해달라고 한다면, 낮은 확률으로라도 언젠가는 잘못된 클래스를 할당하는 일이 분명 생길 수 밖에 없다.
이러한 문제를 예방하기 위해서 존재하는 것이 바로 TSubclssOf 클래스이다. 다음 코드와 같이 TSubclassOf<UDamageType>으로 UPROPERTY를 만든다.
그렇게 하면, 블루프린트 창의 디테일 패널에서 Damage Type의 드롭다운 메뉴에서는 UDamageType의 파생 클래스만 표시된다. 이렇게 되면 개발자가 가끔 잘못된 데미지 타입을 골라서 넣는 실수는 할 수 있겠지만, 애초에 잘못된 클래스를 선택하는 문제는 발생하지 않을 것이다.
또한 TSubclassOf 클래스는 이런 UPROPERTY에 대한 안정성 이외에 C++ 수준의 타입 안정성 역시 제공하기 때문에 서로 호환되지 않는 TSubclassOf 타입을 서로 할당하려고 하면 컴파일 오류가 발생하고, UClass 타입을 할당하려고 하면 할당을 수행할 수 있는지 런타임중에 검사한다. 런타임 검사에 실패하면 결과값은 nullptr이 된다.
제대로 따라가기 (8) C++ 프로그래밍 튜토리얼 :: 일인칭 슈팅 C++ 튜토리얼 (3)
작성버전 :: 4.21.0
언리얼 엔진 튜토리얼인 일인칭 슈팅 C++ 튜토리얼에서는 C++ 코드 작업을 통해서 기본적인 일인칭 슈팅(FPS) 게임을 만드는 법을 배울 수 있다.
이번 튜토리얼은 각 하위 섹션들의 길이가 길어서 분할되어 작성된다.
튜토리얼대로 하면 문제가 발생해서 제대로 따라갈 수 없는 부분으로 동작이 가능하게 수정해야하는 부분은 빨간 블럭으로 표시되어 있다.
이번 튜토리얼에서 새로 배우게 되는 내용은 글 제일 끝에 "이번 섹션에서 배운 것"에 정리된다.
수정
지난 섹션에서 VisibleDefaultOnly는 버전이 바뀌어서 사라진 지정자라고 했던 부분은 잘못된 부분입니다.
VisibleDefaultsOnly는 정상적으로 존재하는 UPROPERTY 지정자입니다. 제가 실수로 VisibleDefaultOnly로 오타를 내서 컴파일러가 지정자가 없다고 에러를 띄웠었습니다. 잘못된 정보로 혼동을 드린 점에 대해서 사과드립니다. 다음부터는 제대로된 확인을 거친 후, 글을 올리도록 하겠습니다.
이전 섹션에서 캐릭터 구성을 마쳤으니, 이제 발사체 무기를 구현하여 발사하면 단순한 수류탄 같은 발사체가 화면 중앙에서 발사되어 월드에 충돌할 때까지 날아가도록 만들어보자. 이번 단계에서는 발사체(Projectile)에 쓸 입력을 추가하고 새 코드 클래스를 만들 것이다.
발사 액션 매핑 추가
편집 메뉴에서 프로젝트 세팅 창을 연다. 그리고 엔진 섹션에서 입력을 선택한 뒤, 액션 매핑에 아래와 같이 "Fire" 라는 입력 세팅을 추가 한다.
발사체(Projectile) 클래스 추가
파일 메뉴에서 새로운 C++ 클래스... 를 선택하고 Actor 클래스를 부모 클래스로 선택하고 다음을 클릭한다.
새 클래스 이름을 "FPSProjectile"로 하고 클래스 생성을 클릭한다.
USphereComponent 추가
FPSProjectile.h로 가서 USphereComponent의 선언을 다음처럼 추가해준다.
ProjectileMovementComponent에서 함수를 호출하려고 할 때, 불완전한 형식은 사용할 수 없다는 에러가 발생하면 "Engine/Classes/GameFramework/ProjectileMovementComponent.h"를 cpp의 전처리기에 추가해주자.
일반적으로 축 매핑(Axis Mappings)을 통해서 키보드, 마우스, 컨트롤러 입력을 "친근한 이름"으로 매핑시킨뒤 나중에 이동 등의 게임 동작에 바인딩할 수 있다. 축 매핑은 지속적으로 폴링되어, 부드러운 전환 및 게임 동작이 가능하다. 컨트롤러의 조이스틱 같은 하드웨어 축은 "눌렸다", "안눌렸다" 같은 식의 구분되는 입력이 아닌 연속적인 입력 수치를 제공한다. 컨트롤러 조이스틱 입력 방법이 스케일식 동작 입력을 제공해 주기는 하지만, 축 매핑으로 WASD 처럼 지속적 폴링되는 게임 동작을 위한 일반 이동 키 매핑도 가능하다.
프로젝트 세팅 창을 열고 엔진 섹션의 입력을 선택한다. 그리고 입력 매핑 세팅을 다음처럼 구성한다.
함수 위에 붙여준 UFUNCTION() 매크로는 엔진에게 이 함수들을 인식시켜 직렬화(Serialization), 최적화, 기타 엔진 함수성에 포함될 수 있도록 해준다.
동작 함수 구현
전형적인 FPS 조작법에서, 캐릭터의 동작 축은 카메라에 상대적이다. "전방"이란 "카메라가 향하는 방향"을, "우측"이란 "카메라가 향하는 방향의 우측"을 뜻한다. 캐릭터의 제어 방향을 구하는 데는 PlayerController를 사용할 것이다. 또한 MoveForward() 함수는 제어 회전의 피치 컴포넌트를 무시하고 입력을 XY 면으로 제한시켜 위아래를 쳐다보더라도 캐릭터는 땅과 평행으로 움직일 수 있도록 한다.
FPSCharacter.cpp에서 AFPSCharacter::SetupPlayerInputComponent() 함수의 하단에 다음 코드를
회전과 쳐다보기에 대한 마우스 입력 처리를 하는 코드를 추가할 차례이다. Character 베이스 클래스는 카메라 회전 컨트롤에 대해서 다음과 같은 필수 함수 둘을 제공한다. 그렇기 때문에 FPSCharacter 클래스에 별도의 함수를 정의하고 구현할 필요없이 바로 AFPSCharacter::SetupPlayerInputComponent() 함수에 바인딩하는 코드를 추가하면 된다.
액션 매핑은 별도의 이벤트에 대한 입력을 다루며, "친근한 이름"에 매핑시켜 나중에 이벤트 주도형 동작에 바인딩시킬 수 있도록 해준다. 최종 효과는 키나 마우스 버튼, 혹은 키패드 버튼에 대해서 누르기/떼기를 통해서 게임 동작을 실행시키도록 하는 거이다.
이번 단계에서는, 스페이스 바에 대한 액션 매핑을 구성하여 캐릭터에 점프 능력을 추가하는 것이다.
점프 액션 매핑
프로젝트 세팅 창을 열고 엔진 섹션에서 입력을 선택한다. 그리고 액션 매핑을 다음과 같이 추가한다.
입력 처리 구현
Character 베이스 클래스의 인터페이스(*.h) 파일 안을 보면, 캐릭터 점프에 대한 지원이 내장되어 있는 것을 볼 수 있다. 캐릭터 점프는 bPressedJump 변수에 묶여 있어서, 점프 키를 누르면, 이 변수를 true로, 떼면 false로 설정해주기만 하면 된다.
이 코드는 카메라의 위치를 캐릭터의 눈 살짝 위쪽으로 잡으면서 폰이 카메라 로테이션을 제어할 수 있도록 해준다.
이대로 빌드하면 Camera Component에서 에러가 발생해서 컴파일에 실패할 수 있다. 코드를 작성할 때는 에러가 뜨지 않아서 방심했지만 이 에러는 충분이 아는 에러일 것이다. 지금 비주얼 스튜디오가 한글 버전이라 로그가 깨져있지만 튜토리얼을 진행하면서 생긴 경험으로 미루어 짐작하건데, 헤더의 30라인에서 발생하는 에러는 UCameraComponent가 정의되지 않았다는 에러일 것이다. UCameraComponent 선언 앞에 class를 붙여주자.
UPROPERTY(VisibleAnywhere)
class UCameraComponent* FPSCameraComponent;
FPS에서 흔히 사용되는 방법은, 전신 바디 메시 하나, 무기와 손 메시하나, 이렇게 별개의 캐릭터 메시 두 개를 사용하는 것이다. 전신 메시는 삼인칭 시첨에서 캐릭터를 보거나 다른 캐릭터를 볼대 사용되고, 플레이어가 일인칭 시점에서 게임을 볼 때는 이 전신 메시를 숨긴다. 그리고 "무기와 손" 메시는 전형적으로 카메라에 붙여 플레이어가 일인칭 시점에서 맵을 볼 때 플레이어에게만 보이는 것이다. 이 파트에서는 캐릭터에 일인칭 메시를 추가해보자.
Game Mode는 게임의 규칙과 승리 조건등을 정의하는 클래스로, 프로젝트를 구성할 때, 언리얼 엔진이 기본 Game Mode 클래스를 생성해주었다. 우리는 이 Game Mode에 기본 게임플레이 프레임워크 유형에 사용될 기본 클래스를, Pawn, PlayerController, HUD 등을 포함해서 설정할 계획이다. 이 파트에서는 에디터를 통해서 비주얼 스튜디오를 열고 거기서 프로젝트의 Game Mode 클래스를 확인해 볼 것이다.
언리얼 에디터의 파일 메뉴에서 Visual Studio 열기를 선택하여 비주얼 스튜디오를 연다.
비주얼 스튜디오가 열리면, 솔루션 탐색기를 통해서 프로젝트에 포함된 소스파일(.cpp)과 헤더파일(.h)가 보인다.
언리얼 엔진이 버전업 되면서 프로젝트에 자동 생성되는 Game Mode 클래스명 끝에 Base가 붙도록 변경되었다. 그래서 열어봐야할 소스파일의 이름은 "FPSProjectGameModeBase.cpp가 된다. 이것은 헤더파일에도 포함되는 것이다.
그리고 처음에 불필요한 빌드 및 컴파일 시간은 줄이기 위해서 기본적으로 필요한 헤더를 제외한 헤더의 포함을 최소화 하도록 변경되었기 때문에 FPSProjectGameModeBase.cpp 파일의 전처리기에 "FPSProject.h"가 포함되어 있지 않을 것이다. 그렇기 때문에 소스파일의 내용은 다음과 같을 것이다.
#include "FPSProjectGameModeBase.h"
다음 부분 부터는 FPSProjectGameModeBase를 기준으로 설명할 것이다.
FPSProjectGameModeBase.h 안에는 다음과 같은 코드가 있다.
#pragma once
#include "CoreMinimal.h"
#include "GameFramework/GameModeBase.h"
#include "FPSProjectGameModeBase.generated.h"
/**
*
*/
UCLASS()
class FPSPROJECT_API AFPSProjectGameModeBase : public AGameModeBase
{
GENERATED_BODY()
};
비어있는 PrivateDependencyModuleNams를 주석 처리하고 "Slate"와 "SlateCore"가 있는 부분을 주석 해제 한다.
//PrivateDependencyModuleNames.AddRange(new string[] { });
// Uncomment if you are using Slate UI
PrivateDependencyModuleNames.AddRange(new string[] { "Slate", "SlateCore" });
UMG 구성이 완료되었다면, 프로젝트의 커스텀 게임 모드에 코드를 추가하여 게임 메뉴를 만들고 표시할 수 있다.
게임이 시작되면 유저 위젯(User Widget)을 새로 만들어 표시하거나, 나중에 제거할 수 있도록 하기 위해서 Game Mode(게임 모드) 클래스에 함수와 프로퍼티를 추가하자. 각 프로젝트에는 커스텀 게임 모드 클래스가 딸려오므로, HowTo_UMGGameMode.h에 다음 코드를 추가하면 된다.
버전이 바뀌면서 GameMode 클래스 파일의 이름이 "ProjectNameGameMode.h", "ProjectNameGameMode.cpp"에서 "ProjectNameGameModeBase.h", "ProjectNameGameModeBase.cpp"로 바뀌었다. 비주얼 스튜디오의 솔루션 탐색기에서 HowTo_UMGGameModeBase.h를 열어서 작업하자.
TSubclassOf 클래스를 사용할 때, [클래스 템플릿 "TSubclassOf"에 대한 인수 목록이 없다]는 에러가 발생한다. 전체 코드를 보고 유추해보건데, BeginPlay() 함수에서 StartingWidgetClass의 내용물을 CurrentWidget 변수에 넣어주거나 ChangeMenuWidget() 함수가 동작할 때, 매개변수로 받은 NewWidgetClass를 CurrentWidget에 대입해주는 방식으로 동작할 것임을 알 수 있다. 그렇기 때문에 여기에서는 TSubclassOf의 템플릿 인수로 UUserWidget 타입을 넣어주는 것이 올바른 해결책일 것이다.
부모 클래스의 함수를 덮어쓸 때는, 여기 BeginPlay에서 하듯이 해당 함수의 부모 클래스 버전을 호줄하는 것이 중요한 경우가 많다. 우리가 구현하는 함수의 버전은 기존의 절차의 끝 부분에 한 단계를 추가하기 위한 것이므로, 함수 첫 줄에 Super::BeginPlay()를 호출한다.
그리고 여기서는 UUserWidget을 사용하기 위해서, HowTo_UMGGameModeBase.cpp 상단에 "Blueprint/UserWidget.h"를 포함시켜 주어야 한다.
#include "Blueprint/UserWidget.h"
계속 해서, 메뉴 간의 전환 방식을 구현해야 한다. 뷰포트에 활성화된 유저 위젯이 있다면 제거하고 난 다음에 유저 위젯을 새로 만들어 뷰포트에 추가해주도록 구현한다.
이 코드는 제공된 위젯 인스턴스를 만들어 화면에 넣는다. 언리얼 엔진은 한 번에 다수의 위젯을 표시하고 상호작용처리가 가능하며, 한 번에 하나만 활성화 되도록 제거를 할 수도 있다. 하지만 위젯을 직접 소멸시킬 필요는 없는데, 뷰포트에서의 제거 밑 레퍼런싱하는 모든 변수 소거(또는 변경) 작업은 언리얼 엔진의 가비지 컬렉션 시스템에서 해주기 때문이다.
마지막으로 Player Controller 클래스에 입력 모드를 설정해야 한다. 그러기 위해서 Player Controller를 기반으로 새로운 C++ 클래스를 추가하자. 이 클래스 안해서 게임이 시작될 때 함수 하나를 추가로 호출해주기만 하면 UI 요소와 상호작용이 가능하도록 할 수 있다.
HowTo_UMGPlayerController.h에서 클래스에 다음 오버라이드를 추가하고 .cpp에 구현한다.
언리얼 에디터에서 컴파일 버튼을 누르면 수정된 코드가 빌드된다. 이를 통해서 유저 위젯을 메뉴로 사용할수 있게 된다.
이제 게임 모드가 메뉴로 사용할 유저 위젯을 생성해보자. 콘텐츠 브라우저의 "신규 추가" 버튼을 누르고 유저 인터페이스 카테고리에서 위젯 블루프린트(Widget Blueprint) 클래스를 선택해서, "MainMenu"와 "NewGameMenu"라는 이름으로 두 개의 유저 위젯을 만든다.
방금 만든 "MainMenu" 위젯을 더블클릭하면 블루프린트 디자이너 창이 열리며, 여기서 메뉴 레이아웃을 만들 수 있다.
팔레트 패널의 일반 섹션에서 버튼(Button)과 텍스트(Text)를 끌어 그래프에 배치한다. 이 버튼은 새 게임 메뉴를 여는데 사용될 것이다.
버튼의 위치와 크기를 다음과 같이 수정하고, 함수성 연결을 해줄 때 알아보기 쉽게 하기 위해서 이름을 "NewGameButton"으로 변경한다.
그리고 이 버튼이 무슨 버튼인지 보여주기 위해서 텍스트 블록(Text Block)을 버튼 위로 끌어다 놓고 디테일을 다음과 같이 수정한다.
- Text를 "New Game"으로 변경
- Visibility를 Hit Test Visibility로 변경한다. 그러면 버튼을 누르려는 클릭을 텍스트 블록이 막지 않는다.
- 이름을 "NewGameText"로 변경한다. 필수는 아니지만 나중에 계층구조에서 어떤 UI인지 찾기 쉬워지기 때문에 들여두면 좋은 습관이 된다.
두 번째 버튼과 텍스트 블록을 만들어서 "Quit"(종료) 기능을 만든다. 버튼 이름은 "QuitButton", 버튼 위치는 (600, 100), 텍스트 블록 이름은 "QuitText"로 설정한다.
그 다음은, 버튼을 클릭했을 때, 코드가 실행되도록 버튼에 이벤트를 추가하는 작업을 해야한다. 디테일 패널에서 적합한 이벤트의 이름 옆에 "+"버튼을 찾아서 누르면 되는데 이 경우에는 "OnClicked" 이벤트를 추가하면 된다.
NewGameButton의 OnClicked 이벤트를 다음과 같이 구성한다.
QuitButton의 OnClicked 이벤트를 다음과 같이 구성한다.
메인 메뉴를 만들었으니, 레벨이 시작되면 메인 메뉴를 로드하는 게임 모드 애셋을 구성하면 된다.
콘텐츠 브라우저에서 프로젝트의 게임 모드에 맞는 블루프린트 클래스를 두 개 추가할 것이다. 그러면 그 두 클래스에 노출된 변수를 원하는 값으로 설정하는 것이 가능하다.
콘텐츠 브라우저에서 신규 추가버튼에서 블루프린트 클래스를 클릭한다.
부모 클래스로 HowTo_UMGGameModeBase를 선택해서 "MenuGameMode" 블루프린트 클래스를 만든다.
그리고 게임 내에서 마우스 커서를 보이게 하기 위해서, 플레이어 컨트롤러의 블루프린트 클래스도 만들어 주어야 한다. 콘텐츠 브라우저에서 블루프린트 클래스를 클릭하고 Player Controller 클래스 상속받아서 "MenuPlayerController"라는 이름으로 클래스를 생성하자.
"MenuPlayerController" 클래스가 생성되었으면, 콘텐츠 브라우저에서 블루프린트 파일을 더블클릭해서 블루프린트 에디터를 연다. 그리고 디테일 창에서 "Show Mouse Cursor" 박스를 체크한다.
다음은 "MenuGameMode"를 편집한다.
Starting Widget Class를 "MainMenu" 애셋으로 설정해서 게임 시작시 메뉴가 뜨도록 만든다.
Default Pawn Class를 Default Pawn이 아닌 Pawn으로 설정해서 플레이어가 메뉴에 있을 때, 이리저리 날아다니지 않도록 만든다.
Player Controller Class를 방금 만든 "MenuPlayerController" 애셋으로 설정해서 메인 메뉴에서 마우스 커서가 표시되도록 만든다.
우리가 만든 게임 모드 블루프린트를 사용하려면, 레벨 에디터 창으로 돌아와 세팅 버튼을 통해 현재 레벨에 대한 월드 세팅을 변경해야 한다.
프로젝트 세팅 메뉴의 맵 & 모드에서도 기본 게임 모드 설정이 가능하다. 이 방법을 사용하면 따로 덮어쓰지 않는 한 모든 레벨에서 기본 게임 모드로 설정된다. 어느 방법을 사용할지는 프로젝트 구성에 따라 달라질 수 있다.
월드 세팅 패널에서 Game Mode Override 항목을 "MenuGameMode" 애셋으로 설정한다.
이제 레벨에 메인 메뉴를 로드하고, 마우스 커서를 표시하는 플레이어 컨트롤러를 사용하도록 환경설정된 커스텀 게임 모드 애셋이 적용되었다. 이제 게임을 실행하면 Quit 버튼은 정상적으로 작동하지만, 아직 New Game 버튼은 빈 메뉴 화면으로 이동한다. 다음 단계에서는 New Game Menu를 구성해주자.
콘텐츠 브라우저에서 아까 만든 "NewGameMenu" 애셋을 연다. 이 메뉴는 이름을 입력할 수 있는 텍스트 박스와, 이름을 입력하기 전에는 누를 수 없는 '게임 플레이' 버튼, 메인 메뉴로 돌아가는 버튼으로 구성된다.
이름 입력 박스를 만들기 위해, 레이아웃에 Text Box(텍스트 박스)를 배치한다.
텍스트 박스의 설정은 다음과 같다.
이전 메뉴에서 버튼을 만들었던 것과 같은 방식으로 텍스트 블록 라벨이 있는 게임 플레이 버튼을 만든다.
버튼 : 이름은 PlayGameButton, 위치는 200, 300, 크기는 200, 100으로 변경한다.
텍스트 블록 : 이름은 PlayGameText, Visibility는 Hit Test Visible로, 내용은 Play Game으로 변경한 다음 PlayGameButton위에 배치한다.
게임 플레이 버튼의 경우, 만약 플레이어 이름 입력란이 비어있다면 작동하지 않도록 특수한 기능을 추가한다. UMG의 바인드 기능을 사용하여 (Behavior섹션 아래) "Is Enabled" 칸에 새로운 함수를 만들면 된다.
텍스트 박스가 공백이 아니어서 버튼이 활성화 될 수 있는 상태인지 확인하려면, 텍스트 박스에서의 텍스트를 스트링으로 변환한 다음 길이가 0보다 큰지 검사하면 된다.
이제 메인 메뉴로 돌아갈 수 있도록 버튼을 하나 추가해보자. 메인 메뉴에서 게임 플레이 버튼과 비슷하지만, 위치 기준이 좌상단이 아닌 우하단 구석이 될 것이다. 그러기 위해서는 디테일 패널에서 "앵커" 드롭다운을 클릭한 다음, 팝업 메뉴에서 우하단 부분을 나타내는 모양을 선택한다.
버튼 이름을 MainMenuButton으로 설정한다.
위치를 -400, -200으로 설정한다.
크기를 200x100으로 설정한다.
이제 NewGameMenu 위젯의 버튼들에도 OnClicked 이벤트들을 추가하자
메인 메뉴 버튼의 경우, 다시 메인 메뉴 위젯을 열어주지만, 게임 플레이 버튼은 누르면 메뉴를 비활성시킨 후, 게임에서 더 이상 아무것도 할 수 없게 만든다. 보통 이 시점에서 첫 레벨을 로드하고, 오프닝 동영상을 재상하거나 폰을 스폰시켜 빙의하는 등의 처리를 하게 된다.
모든 작업을 마치고 플레이 해보면 다음 스크린샷과 같은 장면을 얻을 수 있다.
이번 섹션에서 배운 것
1. 언리얼 모듈 종속성
언리얼 엔진의 기능은 다수의 모듈로 나누어져 있고, 그 중에 필요한 모듈을 묶어서 사용하는 방식이다. 이번 섹션 처음 부분에 build.cs파일에서 모듈 종속성을 구성할 때도 보았겠지만, 기본적으로 언리얼은 Core, CoreUObject, Engine, InputCore 모듈을 사용하고 있었고, UI와 관련된 기능을 사용하기 위해서 UMG 모듈과 Slate, SlateCore 모듈을 구성에 추가해주었다.
추후의 일이지만, 언리얼 엔진을 커스터마이징하고자 할 때, 새롭게 추가하는 기능을 이러한 모듈로 만들어 덧붙이게 될 것이다.
2. TSubClassOf<T>
UClass 타입 안정성을 보장하는 템플릿 클래스. TSubClassOf에 전달된 인수가 템플릿 인자로 받은 타입과 일치하거나 템플릿 인자로 받은 타입을 상속받은 타입인지를 런타임 중에 확인하도록 도와주는 클래스이다.
3. UUserWidget
UUserWidget* UserWidget;
Widget Blueprint를 통해서 확장할 수 있는 사용자 위젯.
UserWidget->AddToViewport();
유저 위젯을 뷰 포트에 추가하는 함수.
UserWidget->RemoveToViewport();
유저 위젯을 뷰 포트에서 제거하는 함수.
4. AActor::GetWorld()
GetWorld();
UWorld 객체를 가져오는 함수. UWorld는 액터나 컴포넌트들을 포함하는 맵이나 샌드박스의 최상위 객체이다.
5. CreateWidget()
CreateWidget(GetWorld(), newWidget);
위젯을 생성하는 함수
6. APlayerController::SetInputMode()
SetInputMode(FInputModeGameAndUI());
플레이어 컨트롤러의 입력 모드를 설정하는 함수. Game 입력만 받을지, UI 입력만 받을지, 아니면 둘 다 받을지를 정할 수 있다.
위의 코드에 따르면, 비어있는 Scene Component가 루트로 생성되며, 거기에 Spring Arm Component를 만들어 붙인다. 그리고 Spring Arm의 기본 피치(Pitch)를 -60도로(60도 아래쪽으로) 설정하고, 위치는 루트의 50유닛 위로 정한다. Spring Arm Component의 길이와 유연성을 위한 변수도 설정해주었다.
Spring Arm의 설정이 끝났다면 Spring Arm Component 끝의 소켓에 Camera Componenet를 만들어서 연결해주면 된다.
이제 게임에서 사용할 수 있는 입력 매핑이 생겼으니, 입력 매핑으로부터 받은 데이터를 저장할 멤버 변수들을 구성할 차례이다.
업데이트 중에 이동과 마우스 방향 축을 알아야 하는데 이 값으로는 FVector2D 타입이 적합하다. 그리고 줌인 중인지 줌아웃 중인지도 알아야하며, 얼마나 줌된 상태인지를 알아야한다. 그것을 위해서 PawnWithCamera.h의 클래스 정의에 다음과 같이 멤버 변수 선언을 추가해주자.
이 코드에서는 줌인/줌아웃할 때, 걸이는 시간, FOV 값, 스프링 암의 거리 등을 하드코딩해서 사용하고 있지만, 이 값들을 멤버 변수로 만들어서 UPROPERTY(EditAnywhere)로 설정해서 에디터에 노출시키면 프로그래머가 아닌 개발자들도 에디터에서 값을 변경할 수 있고, 프로그래머도 값을 바꿀때마다 컴파일을 새로 할 필요가 없게 만들 수 있다.
이 코드 블록은 Pawn의 요(Yaw)를 마우스 X축으로 직접 회전시키되, 카메라 시스템은 마우스 Y축의 피치(Pitch) 변화에만 반응한다. 액터나 그 서브클래스를 회전시키면, 실제로 루트 레벨의 컴포넌트가 회전되어 거기에 붙어있는 모든 오브젝트에 간접적으로 영향을 미친다.