개발단에 가입하여 베르의 게임 개발 유튜브를 후원해주세요! 

 

베르의 게임 개발 유튜브

안녕하세요! 여러분들과 함께 게임 개발을 공부하는 베르입니다! 게임 개발에 도움이 되는 강좌들을 올리는 채널입니다! [투네이션 후원] https://toon.at/donate/637735212761460238 [유니티 어필리에이트

www.youtube.com

 

안녕하세요! 여러분들과 함께 게임 개발을 공부하는 베르입니다!

이번에는 언리얼 엔진의 가장 기초가 되는 액터와 컴포넌트에 대해서 알아봅시다.

 

사용 엔진 버전 : 5.0.2

 

타임라인

0:00 인트로

0:18 액터

2:21 컴포넌트

3:44 아웃트로

스크립트

인트로

안녕하세요. 여러분들과 함께 게임 개발을 공부하는 베르입니다.

이번에는 언리얼 엔진에서 가장 기본이 되는 액터와 컴포넌트에 대해서 알아보도록 하겠습니다.

본격적인 설명에 들어가기 전에 언리얼 엔진을 실행하고 시작용 콘텐츠를 포함한 상태로 새 프로젝트를 하나 생성합니다.

액터

먼저 액터에 대해서 알아보자면, 아주 간단하게 설명해서 레벨에 배치할 수 있는 오브젝트를 말합니다.

우리가 방금 새로 생성한 언리얼 프로젝트에서 보면 기본 레벨에 있는 모든 것이 액터입니다.

의자나 테이블, 바닥은 물론 눈에 직접 보이지는 않지만 환경에 영향을 미치는 광원이나, 배경 소리를 구성하는 음원 등 여기 아웃라이너 패널에서 보이는 모든 것들은 액터라는 뜻입니다.

그럼 먼저 이 액터를 생성하는 방법을 간단하게 알아보겠습니다.

메인 툴바에서 육면체에 +모양이 표시된 액터 추가 버튼을 누르면 여러가지 항목을 볼 수 있습니다.

만들 수 있는 액터의 종류에 따라 분류가 되어있는데 먼저 기본 카테고리에서는 일반적으로 자주 사용되는 몇 가지 액터들을 생성할 수 있습니다.

일단 기본 카테고리에서 액터를 선택하면 완전히 비어있고 아무런 기능도 하지 않는 빈 액터를 생성할 수 있습니다.

비어있는 액터에는 기본적으로 씬 컴포넌트가 루트 컴포넌트로 붙어있고 이 루트 컴포넌트가 액터의 기본적인 위치나 회전, 크기와 같은 정보를 담고 있습니다.

그래서 이 액터가 레벨의 어디에 어떻게 배치되어있는지 확인할 수 있습니다.

라이트 카테고리에서는 씬에서 여러 액터들에게 빛을 비춰서 눈에 보이게 만들어줄 빛을 추가할 수 있습니다.

아웃라이너에서 라이트들을 끄면 레벨에 배치된 의자와 탁자들은 검게 어두워지면서 제대로 보이지 않게 되는 것을 볼 수 있습니다.

여기에 라이트 카테고리에서 포인트 라이트를 선택해서 레벨에 추가하고 테이블 위에 배치하면 어두워서 보이지 않던 주위가 보이게 됩니다.

이 외에도 셰이프 카테고리에서는 기본적인 육면체나 원뿔, 실린더, 구체 등의 액터를 추가할 수 있고, 카테고리마다 여러가지 다양한 기능을 가진 액터들을 생성할 수 있는 항목들을 가지고 있습니다.

각 카테고리에서 제공되는 액터들은 해당 기능에 대해서 알아보는 강좌에서 알아보도록 하겠습니다.

모든 클래스 카테고리에서는 언리얼 엔진에서 제공되는 모든 종류의 액터를 볼 수 있습니다.

물론 이렇게 계속 메인 툴바의 액터 배치 버튼을 눌러서 작업하기가 귀찮다면 액터 배치 패널을 열고 여기서 원하는 액터를 찾아서 배치하는 방법도 있습니다.

컴포넌트

앞에서 액터에 대해서 설명했으니 이제 그 액터에 부착되는 컴포넌트에 대해서 설명하겠습니다

사실 액터는 컴포넌트들을 담는 하나의 그릇이고 이 액터에 어떤 컴포넌트가 부착되느냐에 따라서 그 역할이 결정됩니다.

예를 들어 우리가 앞에서 만든 빈 액터는 루트 컴포넌트, 즉 액터의 가장 기본이 되는 컴포넌트에 씬 컴포넌트만 붙어있어서 아무런 기능을 하지 못하고 액터의 위치만 표현할 수 있습니다.

하지만 씬에 배치된 의자 액터의 경우에는 루트 컴포넌트에 스태틱 메시 컴포넌트라는 컴포넌트가 붙어있어서 3D 모델을 가지고 눈에 직접 보이는 형태로 렌더링됩니다.

우리가 배치한 포인트 라이트 액터 역시 라이트 컴포넌트가 붙어있어서 빛을 방출하고 주변을 보이도록 만들어 줍니다.

빈 액터 역시 디테일 패널에서 추가 버튼을 누르고 카메라 컴포넌트를 추가해주면 빈 액터가 아닌 카메라로서의 기능을 하게 됩니다.

앞에서도 말했다시피 액터에 어떤 컴포넌트를 붙이느냐 에 따라서 액터의 기능이 결정되는 것입니다.

언리얼 엔진에서는 게임 개발에 필요한 기능을 가진 굉장히 다양한 종류의 컴포넌트들을 제공합니다.

하지만 이 중에 여러분이 개발하고자 하는 게임의 기능을 지원하는 컴포넌트가 없을 수도 있습니다.

그럴 때는 C++나 블루프린트를 이용해 여러분 만의 커스텀 컴포넌트를 만들어서 액터에 붙이면 됩니다.

이런 커스텀 컴포넌트 제작 방법 역시 추후에 강좌의 진행에 따라서 하나씩 배워보도록 할겁니다.

아웃트로

이번에는 언리얼 엔진의 가장 기본이 되는 액터와 컴포넌트에 대해서 알아보았습니다.

이 강좌는 시청자 여러분들의 시청과 후원으로 제작되었습니다.

이상 베르의 게임 개발 유튜브였습니다. 감사합니다.

 

[투네이션]

 

-

 

toon.at

[Patreon]

 

WER's GAME DEVELOP CHANNEL님이 Game making class videos 창작 중 | Patreon

WER's GAME DEVELOP CHANNEL의 후원자가 되어보세요. 아티스트와 크리에이터를 위한 세계 최대의 멤버십 플랫폼에서 멤버십 전용 콘텐츠와 체험을 즐길 수 있습니다.

www.patreon.com

[디스코드 채널]

 

Join the 베르의 게임 개발 채널 Discord Server!

Check out the 베르의 게임 개발 채널 community on Discord - hang out with 399 other members and enjoy free voice and text chat.

discord.com

 

반응형

언리얼 튜토리얼 게임 조종 카메라 편을 진행하면서 언리얼 엔진에서 카메라를 활성화시키고 전환하는 방법을 알아봅시다.

 

사용 엔진 버전 : 4.25 - 4.26

 

타임라인

0:00 인트로

0:17 프로젝트 생성

0:33 카메라 배치

2:26 카메라 전환 기능 구현

5:22 직접 해보기 1 - 이동하는 카메라

6:18 직접 해보기 2 - 배열에 카메라 저장해서 전환하기

7:54 직접 해보기 3 - 구조체에 카메라, 전환 시간, 블랜딩 시간 저장해서 사용하기

 

[투네이션]

 

-

 

toon.at

[Patreon]

 

WER's GAME DEVELOP CHANNEL님이 Game making class videos 창작 중 | Patreon

WER's GAME DEVELOP CHANNEL의 후원자가 되어보세요. 아티스트와 크리에이터를 위한 세계 최대의 멤버십 플랫폼에서 멤버십 전용 콘텐츠와 체험을 즐길 수 있습니다.

www.patreon.com

[디스코드 채널]

 

Join the 베르의 게임 개발 채널 Discord Server!

Check out the 베르의 게임 개발 채널 community on Discord - hang out with 399 other members and enjoy free voice and text chat.

discord.com

 

반응형

언리얼 프로그래밍 튜토리얼! 제대로 따라해봅시다!

 

사용 언리얼 버전 : 4.25

 

타임라인

0:00 개요

0:37 새 프로젝트 생성

0:55 FloatingActor C++ 클래스 생성

1:18 FloatingActor 기능 구현

4:07 FloatingActor 기능 테스트

5:23 직접 해보기

5:58 직접 해보기 1 : 파티클 추가

7:01 직접 해보기 2 : 속도 조절용 프로퍼티 만들기

7:58 직접 해보기 3 : 다른 축 움직임 추가하기

9:04 마무리

 

[투네이션]

 

-

 

toon.at

[Patreon]

 

WER's GAME DEVELOP CHANNEL님이 Game making class videos 창작 중 | Patreon

WER's GAME DEVELOP CHANNEL의 후원자가 되어보세요. 아티스트와 크리에이터를 위한 세계 최대의 멤버십 플랫폼에서 멤버십 전용 콘텐츠와 체험을 즐길 수 있습니다.

www.patreon.com

[디스코드 채널]

 

Join the 베르의 게임 개발 채널 Discord Server!

Check out the 베르의 게임 개발 채널 community on Discord - hang out with 399 other members and enjoy free voice and text chat.

discord.com

 

반응형

Tutorial (2)

유니티 에디터의 화면 구성

 

작성 기준 버전 :: 2018.3.1f1

 

 

유니티 에디터로 프로젝트를 처음으로 열면 화면이 아래의 이미지와 같이 구성되어 있다.

 

 

 

이 화면의 구성에 대해서 하나씩 알아보도록 하자.

 

 

씬(Scene) 뷰

 

 

에디터 레이아웃 구성의 한 가운데 있는 것은 Scene 뷰다. 유니티에서 씬(Scene)이라는 개념은 일종의 맵(Map)이나 레벨(Level)에 해당한다. 씬 뷰는 이러한 씬에 배경을 꾸미기위해 소품이나 배경 건물 등을 배치하는데 사용된다.

 

 

하이어라키(Hierarchy) 창

 

 

씬 뷰의 좌측에 있는 하이어라키 창은 씬에 배치되어 있는 오브젝트들을 보여준다. 가장 상단에 SampleScene이라는 이름으로 현재 열려있는 씬의 이름이 표시되고, 그 아래에 그 씬에 포함된 오브젝트들이 나타난다. 기본적으로 배치되어 있는 오브젝트는 Main Camera라는 이름의 카메라와, Directional Light라는 이름의 조명이다.

 

 

프로젝트(Project) 창

 

 

프로젝트 창은 현재 프로젝트에 포함된 텍스처나 모델링, 스크립트, 씬 등의 애셋(Asset)을 보여주는 창이다. 개발 경험이 많지 않은 경우에는 프로젝트 창에 애셋들이 추가되는 대로 중구난방으로 쌓아두는 일이 많은데, 애셋들을 적절하게 분류해서 정리해두는 버릇을 들여두는게 나중에 필요한 애셋을 찾거나 불필요한 애셋을 정리할 때 큰 도움이 되며, 개발 속도에도 긍정적인 영향을 미칠 것이다.

 

 

인스펙터(Inspector) 창

 

 

인스펙터 창은 지금은 아무 내용이 없지만, 하이어라키 창에서 씬에 배치된 오브젝트나 프로젝트 창에서 프로젝트에 포함된 애셋을 선택하면 그것에 대한 자세한 정보를 보여주는 역할을 한다.

 

 

하이어라키 창에서 메인 카메라 오브젝트를 선택하고 인스펙터 창을 보면 메인 카메라 오브젝트의 자세한 정보를 확인하고 수정할 수 있게 된다.

 

 

게임(Game)

 

 

씬 창 뒤에 탭으로 되어 있는 게임 창 탭을 선택하면 씬 창이 뒤로 전환되고 게임 창이 앞으로 나온다.

 

게임 창은 씬 창과 같이 씬을 보여주는 역할을 하지만, 게임 창은 씬 창과는 다르게 카메라가 보여주는 것만을 볼 수 있는 창이다. 즉, 실제 게임에서 보게 될 장면을 보여주는 창이다.

 

 

 

 

 

콘솔(Console) 창

 

 

콘솔 창은 개발도중에 발생한 에러나 경고, 개발자가 기능을 테스트하거나 값을 체크하기 위해 출력시킨 로그 등이 출력되는 창이다. 출력된 로그를 더블클릭하면 비주얼 스튜디오가 열리고 해당 로그가 출력된 스크립트의 위치로 이동하게 된다.

 

로그의 종류

 

 

유니티 엔진에서 로그는 크게 일반 로그, 경고 로그, 에러 로그로 나누어지고, 일반 로그는 데이터의 값이나 진행 상황, 상태를 체크하기 위해 사용되는 로그이고, 경고 로그는 치명적이지는 않지만 수정할 것을 권장하는 로그이며, 에러 로그는 게임이 정지하거나 기능에 심각한 이상이 발생하는 상황에 대한 로그이다.

 

세부적인 버튼의 내용은 다음과 같다.

 

 

뒤의 세 개 버튼은 각각 일반 로그, 경고 로그, 에러 로그 보기 버튼이며, 해당 버튼을 눌러서 원하는 종류의 로그만 볼 수 있다.

 

 

일반 로그만 활성화한 상태이다.

 

 

경고 로그만 활성화한 상태이다.

 

 

 

에러 로그만 활성화한 상태이다.

 

 

Clear 버튼은 현재까지 출력된 로그들을 모두 지운다.

 

 

 

Collapse 버튼은 같은 내용의 로그가 여러 번 출력되면 여러 줄로 표시하지 않고 한 줄로 표시하며 같은 내용의 로그가 몇 번이나 출력되었는지를 보여주는 기능이다. 이것은 로그의 순서가 중요하지 않고, 출력되었느냐 혹은 몇 회나 출력되었는지가 중요한 경우에 사용하게 된다.

 

Clear on Play 버튼은 에디터에서 플레이 버튼을 눌렀을 때, 남아있는 로그를 모두 지우고 플레이를 시작하게 만든다. 남아있는 이전에 띄운 로그가 남아있다면 플레이 중에 뜨는 로그가 보기 힘들어지는 경우가 많기 때문에 사용한다.

 

Error Pause 버튼은 플레이 도중에 에러 로그가 발생하면 플레이를 일시정지 시키는 버튼이다. 에러가 나도 플레이가 계속되면 에러가 발생하는 순간을 놓칠 수도 있기 때문에 에러가 발생한 순간을 잡아내기 위해서 사용하는 기능이다.

 

Editor 버튼은 에디터의 로그를 출력한다는 뜻의 버튼이다. 나중에 모바일 게임을 개발하다보면 APK로 빌드한 앱을 모바일 기기에 설치해서 컴퓨터와 연결하고 실행해서 실시간으로 로그를 보기위해서 사용되는 버튼이다.

 

 

애셋 스토어(Asset Store) 창

 

 

 

 

애셋 스토어 창은 다른 개발자들이 만든 게임 개발용 애셋들을 구매할 수 있는 창이다. 대규모 개발팀이나 회사는 게임에 필요한 모든 리소스들을 개발할 여력이 있겠지만, 소규모 개발팀이나 1인 개발자는 모든 리소스를 만들어내기 매우 어렵기 때문에 다른 사람이 만든 애셋을 구매해서 사용하면 더 빠르게 게임을 개발할 수 있다는 장점이 있다.

 

 

그 외의 창들

 

유니티 엔진에는 방금 화면 구성에서 소개한 창들 외에도 많은 종류의 창들이 존재한다.

 

 

에디터 상단의 메뉴 바에서 Window 메뉴를 클릭해서 드롭다운 메뉴를 펼치면 숨겨진 창들의 목록을 보고 필요한 창을 열어서 사용할 수 있다.

 

 

그 외의 버튼들

 

 

이 버튼들은 씬에 배치된 오브젝트를 이동, 회전, 크기 조절을 하는데 사용되는 버튼들이다.

 

 

이 버튼들은 에디터에서 게임을 실행, 일시정지, 한 프레임씩 넘기기를 하는 버튼이다.

 

 

좌측 버튼부터 순서대로, 팀단위 작업을 위한 유니티 콜라보(Collaborate) 버튼, 유니티가 제공하는 서비스 버튼, 계정 관리 버튼, 씬 창에서 보이기 원하는 레이어를 선택하는 버튼, 유니티 에디터의 레이아웃 버튼이다.

 

 

유니티 에디터 레이아웃 수정하기

 

유니티 에디터의 화면 구성은 사용자가 편한 방식으로 레이아웃을 수정할 수 있다.

 

 

위치를 수정하려고하는 창의 탭을 드래그해서 에디터에서 완전히 떼어내거나 다른 곳에 배치할 수 있다.

 

 

완전히 떼어낸 하이어라키 창

 

 

다른 위치에 배치한 하이어라키 창

 

 

각자 사용하기 편한 방식으로 레이아웃을 배치해보자.

 

 

수정한 레이아웃 저장하기

 

수정한 레이아웃은 저장해두고 언제든지 다시 불러올 수 있다. 에디터 우측 상단 구석에 Default 버튼을 클릭하면 드롭다운 메뉴 중에 Save Layout... 버튼을 클릭하면 수정한 레이아웃의 이름을 지어줄 수 있는 대화상자가 뜬다.

 

 

좌측부터 게임, 씬, 콘솔이 한 묶음으로 묶여있고, 그 다음엔 하이어라키와 프로젝트, 마지막으로 인스펙터로 나열되서 3-2-1로 배치되어 있으니 이 레이아웃의 이름을 Countdown이라고 저장하겠다.

 

 

레이아웃을 저장하고 나면 Default로 되어있던 버튼이 Countdown으로 되어있으며 추가한 Countdown 레이아웃이 드롭다운 목록에 추가되어 있는 것을 확인할 수 있다. 이렇게 레이아웃을 저장해두면, 레이아웃이 바뀌어도 언제든지 손쉽게 자주 사용하는 레이아웃으로 돌아올 수 있다.

 

 

[유니티 어필리에이트 프로그램]

아래의 링크를 통해 에셋을 구매하시거나 유니티를 구독하시면 수익의 일부가 베르에게 수수료로 지급되어 채널의 운영에 도움이 됩니다.

 

에셋스토어

여러분의 작업에 필요한 베스트 에셋을 찾아보세요. 유니티 에셋스토어가 2D, 3D 모델, SDK, 템플릿, 툴 등 여러분의 콘텐츠 제작에 날개를 달아줄 다양한 에셋을 제공합니다.

assetstore.unity.com

 

Easy 2D, 3D, VR, & AR software for cross-platform development of games and mobile apps. - Unity Store

Have a 2D, 3D, VR, or AR project that needs cross-platform functionality? We can help. Take a look at the easy-to-use Unity Plus real-time dev platform!

store.unity.com

 

Create 2D & 3D Experiences With Unity's Game Engine | Unity Pro - Unity Store

Unity Pro software is a real-time 3D platform for teams who want to design cross-platform, 2D, 3D, VR, AR & mobile experiences with a full suite of advanced tools.

store.unity.com

[투네이션]

 

-

 

toon.at

[Patreon]

 

WER's GAME DEVELOP CHANNEL님이 Game making class videos 창작 중 | Patreon

WER's GAME DEVELOP CHANNEL의 후원자가 되어보세요. 아티스트와 크리에이터를 위한 세계 최대의 멤버십 플랫폼에서 멤버십 전용 콘텐츠와 체험을 즐길 수 있습니다.

www.patreon.com

[디스코드 채널]

 

Join the 베르의 게임 개발 채널 Discord Server!

Check out the 베르의 게임 개발 채널 community on Discord - hang out with 399 other members and enjoy free voice and text chat.

discord.com

 

반응형

제대로 따라가기 (8) C++ 프로그래밍 튜토리얼 :: 일인칭 슈팅 C++ 튜토리얼 (3)

작성버전 :: 4.21.0

언리얼 엔진 튜토리얼인 일인칭 슈팅 C++ 튜토리얼에서는 C++ 코드 작업을 통해서 기본적인 일인칭 슈팅(FPS) 게임을 만드는 법을 배울 수 있다.

 

이번 튜토리얼은 각 하위 섹션들의 길이가 길어서 분할되어 작성된다.

 

튜토리얼대로 하면 문제가 발생해서 제대로 따라갈 수 없는 부분으로 동작이 가능하게 수정해야하는 부분은 빨간 블럭으로 표시되어 있다.


이번 튜토리얼에서 새로 배우게 되는 내용은 글 제일 끝에 "이번 섹션에서 배운 것"에 정리된다.

 

수정

 

지난 섹션에서 VisibleDefaultOnly는 버전이 바뀌어서 사라진 지정자라고 했던 부분은 잘못된 부분입니다.

 

VisibleDefaultsOnly는 정상적으로 존재하는 UPROPERTY 지정자입니다. 제가 실수로 VisibleDefaultOnly로 오타를 내서 컴파일러가 지정자가 없다고 에러를 띄웠었습니다. 잘못된 정보로 혼동을 드린 점에 대해서 사과드립니다. 다음부터는 제대로된 확인을 거친 후, 글을 올리도록 하겠습니다.

 

지난 섹션의 잘못된 부분은 수정되었습니다.(지난 섹션 :: 제대로 따라가기 (7) C++ 프로그래밍 튜토리얼 :: 일인칭 슈팅 C++ 튜토리얼 (2))

 

3. 발사체 구현

 

이번 섹션에서는 일인칭 슈팅 게임에서 발사체를 구현하는 방법에 대해서 배울 수 있다.

 

3-1. 게임에 발사체 추가

 

이전 섹션에서 캐릭터 구성을 마쳤으니, 이제 발사체 무기를 구현하여 발사하면 단순한 수류탄 같은 발사체가 화면 중앙에서 발사되어 월드에 충돌할 때까지 날아가도록 만들어보자. 이번 단계에서는 발사체(Projectile)에 쓸 입력을 추가하고 새 코드 클래스를 만들 것이다.

 

발사 액션 매핑 추가

 

편집 메뉴에서 프로젝트 세팅 창을 연다. 그리고 엔진 섹션에서 입력을 선택한 뒤, 액션 매핑에 아래와 같이 "Fire" 라는 입력 세팅을 추가 한다.

 

 

발사체(Projectile) 클래스 추가

 

파일 메뉴에서 새로운 C++ 클래스... 를 선택하고 Actor 클래스를 부모 클래스로 선택하고 다음을 클릭한다.

 

 

새 클래스 이름을 "FPSProjectile"로 하고 클래스 생성을 클릭한다.

 

 

USphereComponent 추가

 

FPSProjectile.h로 가서 USphereComponent의 선언을 다음처럼 추가해준다.

 

UPROPERTY(VisibleDefaultsOnly, Category = "Projectile")
USphereComponent* CollisionComponent;

 

USphereComponenet가 정의되지 않았다고 에러가 발생한다면, USphereComponent 앞에 class 키워드를 붙여주자.

class USphereComponent* CollisionComponent;

 

그 다음엔 FPSProjectile.cpp의 AFPSProjectile::AFPSProjectile() 생성자 함수에서 다음 코드를 추가한다.

CollisionComponent = CreateDefaultSubobject<USphereComponent>(TEXT("SphereComponent"));
CollisionComponent->InitSphereRadius(15.0f);
RootComponent = CollisionComponent;

 

CollisionComponent에서 함수를 호출하려고 할 때, 불완전한 형식은 사용할 수 없다는 에러가 발생하면 "Engine/Classes/Components/SphereComponent.h"를 cpp의 전처리기에 추가해주자.

#include "Engine/Classes/Components/SphereComponent.h"

 

프로젝타일 무브먼트 컴포넌트(Projectile Movement Component) 추가

 

FPSProjectile.h의 하단에 다음 코드를 추가한다.

UPROPERTY(VisibleAnywhere, Category = "Movement")
UProjectileMovementComponent* ProjectileMovementComponent;

 

UProjectileMovementComponent가 정의되지 않았다고 에러가 발생한다면, UProjectileMovementComponent 앞에 class 키워드를 붙여주자.

class UProjectileMovementComponent* ProjectileMovementComponent;

 

다시, FPSProjectile.cpp의 AFPSProjectile::AFPSProjectile() 생성자 함수에서 다음 코드를 추가한다.

ProjectileMovementComponent = CreateDefaultSubobject<UProjectileMovementComponent>(TEXT("ProjectileMovementComponent"));
ProjectileMovementComponent->SetUpdatedComponent(CollisionComponent);
ProjectileMovementComponent->InitialSpeed = 3000.0f;
ProjectileMovementComponent->MaxSpeed = 3000.0f;
ProjectileMovementComponent->bRotationFollowsVelocity = true;
ProjectileMovementComponent->bShouldBounce = true;
ProjectileMovementComponent->Bounciness = 0.3f;

 

ProjectileMovementComponent에서 함수를 호출하려고 할 때, 불완전한 형식은 사용할 수 없다는 에러가 발생하면 "Engine/Classes/GameFramework/ProjectileMovementComponent.h"를 cpp의 전처리기에 추가해주자.

#include "Engine/Classes/GameFramework/ProjectileMovementComponent.h"

 

발사체 초기 속도 설정

 

FPSProjectile.h로 가서 다음의 함수 선언을 추가한다.

void FireInDirection(const FVector& ShootDirection);

 

이 함수가 발사체의 발사를 담당한다.

 

FPSProjectile.cpp에 함수의 정의부를 추가한다.

void AFPSProjectile::FireInDirection(const FVector& ShootDirection)
{
    ProjectileMovementComponent->Velocity = ShootDirection * ProjectileMovementComponent->InitialSpeed;
}

 

발사체의 속력은 ProjectileMovementComponent에 의해 정의되므로 발사 방향만 제공해주면 된다.

 

발사 입력 액션 바인딩

 

FPSCharacter.h로 가서 다음의 함수 선언을 추가한다.

UFUNCTION()
void Fire();

 

FPSCharacter.cpp의 SetupPlayerInputComponent() 함수에 다음 바인딩을 추가한다.

InputComponent->BindAction("Fire", IE_Pressed, this, &AFPSCharacter::Fire);

 

그리고, Fire() 함수의 정의부 역시 추가한다.

void AFPSCharacter::Fire()
{
}

 

발사체의 스폰 위치 정의

 

FPSProjectile 액터를 스폰하는 Fire() 함수 구현을 위해서는 발사체를 스폰할 위치와, 스폰해야할 발사체의 클래스를 고려해야 한다.

 

FPSCharacter.h에 다음 코드를 추가한다.

UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = GamePlay)
FVector MuzzleOffset;

UPROPERTY(EditDefaultsOnly, Category = Projectile)
TSubclassOf<class AFPSProjectile> ProjectileClass;

 

코드 컴파일 및 검사

 

이제 새로 구현된 발사체 코드를 컴파일하고 검사할 차례다. 솔루션 탐색기에서 FPSProject에 우클릭하고 빌드(Build)를 선택하여 프로젝트를 컴파일한다.

 

 

 

3-2. 발사 구현

 

이번 단계에서는 캐릭터가 발사체 발사를 할 수 있도록 Fire() 함수를 구현해본다.

 

Fire 함수 구현

 

FPSCharacter.cpp 상단에 "FPSProjectile.h"를 포함시킨다.

#include "FPSProjectile.h"

 

FPSCharacter.cpp에 만들어둔 Fire() 함수의 바디를 다음과 같이 수정한다.

void AFPSCharacter::Fire()
{
    if (ProjectileClass)
    {
        FVector CameraLocation;
        FRotator CameraRotation;
        GetActorEyesViewPoint(CameraLocation, CameraRotation);

        FVector MuzzleLocation = CameraLocation + FTransform(CameraRotation).TransformVector(MuzzleOffset);
        FRotator MuzzleRotation = CameraRotation;

        MuzzleRotation.Pitch += 10.0f;
        UWorld* World = GetWorld();
        if (World)
        {
            FActorSpawnParameters SpawnParams;
            SpawnParams.Owner = this;
            SpawnParams.Instigator = Instigator;
            AFPSProjectile* Projectile = World->SpawnActor<AFPSProjectile>(ProjectileClass, MuzzleLocation, MuzzleRotation, SpawnParams);
            if (Projectile)
            {
                FVector LaunchDirection = MuzzleRotation.Vector();
                Projectile->FireInDirection(LaunchDirection);
            }
        }
    }
}

 

변경사항을 저장하고 프로젝트를 빌드한다.

 

 

프로젝타일 블루프린트 빌드하기

 

다음 링크에서 샘플 메시를 받아서 압축을 풀고 진행해야 한다. "프로젝타일 메시"

 

콘텐츠 브라우저의 파일 창에 우클릭해서 /Game에 임포트... 를 선택해서 임포트 대화창을 연다.

 

 

Sphere.fbx 메시 파일을 찾아서 선택하고 임포트를 선택해서 메시를 프로젝트에 추가하고, 저장 버튼을 클릭해서 임포트된 스태틱 메시를 저장한다.

 

콘텐츠 브라우저에서 Blueprints 폴더에 들어간다.

 

신규 추가 버튼을 클릭하고 블루프린트 클래스를 선택한다.

 

모든 클래스 드롭다운 메뉴를 펼친다음 검색창에 FPSProjectile을 입력하고 FPSProjectile 클래스를 선택한다.

 

 

새 블루프린트의 이름을 BP_FPSProjectile로 정하고 아이콘을 더블클릭해서 블루프린트 에디터를 연다.

 

 

컴포넌트 탭에서 CollisionComponent를 클릭하고 컴포넌트 추가 드롭다운 목록에서 Static Mesh를 찾아서 추가하고 이름은 ProjectileMeshComponent로 한다.

 

 

디테일 탭의 Static Mesh 섹션에서 "없음"이라고 된 드롭다운 메뉴를 클릭해서 Sphere 스태틱 메시를 선택한다.

 

 

X, Y, Z 스케일 값을 0.09로 설정한다. 자물쇠 아이콘을 클릭하면 세 축을 모두 고정시켜 상대 비율이 유지된다.

 

 

ProjectileMeshComponent의 콜리전 프리셋 값을 NoCollision으로 설정한다. (콜리전에 이 스태틱 메시가 아닌 SphereComponent를 사용한다.)

 

 

블루프린트를 컴파일, 저장한 뒤 블루프린트 에디터를 닫는다.

 

BP_FPSCharacter를 더블클릭해서 블루프린트 에디터를 열고 Projectile Class 프로퍼티를 찾은 다음 BP_FPSProjectile로 설정한다.

 

 

그리고 Muzzle Offset 프로퍼티를 {100, 0, 0}으로 설정하여 발사체를 카메라 약간 앞에서 생성되게 한다.

 

 

블루프린트를 컴파일, 저장 후 블루프린트 에디터를 닫는다.

 

게임 내 발사체 발사 테스트

 

레벨 에디터에서 플레이 버튼을 클릭하여 PIE 모드에 들어가서 발사체를 발사해보자.

 

좌클릭하면 발사체가 월드로 발사된다.

 

 

 

Esc키를 누르거나 중지 버튼을 클릭하여 PIE 모드를 빠져나가자.

 

 

 

 

 

3-3. 발사체 콜리전 및 수명 구성

 

지금 만들어진 발사체는 아무리 긴 시간이 지나도 사라지지 안고, 월드의 다른 오브젝트와 충돌하지 않는 상태이다. 이번 단계에서는 발사체의 충돌과 수명을 구성한다.

 

발사체의 수명 기간 제한

 

FPSProjectile.cpp에서 AFPSProjectile::AFPSProjectile() 생성자 함수에 다음 코드를 추가하여 발사체의 수명을 설정한다.

InitialLifeSpan = 3.0f;

 

발사체의 충돌 세팅 편집

 

언리얼 엔진에는 여러가지 프리셋 콜리전 채널이 포함되어 있으나, 커스터마이징 프리셋 콜리전 채널을 만들 수도 있다.

 

프로젝트 세팅 창의 엔진 섹션에서 콜리전을 선택하면 콜리전 채널 프리셋들을 확인할 수 있다.

 

 

 

 

새 오브젝트 채널... 을 선택하여 콜리전 채널을 새로 만든다. 새로운 콜리전 채널 이름을 "Projectile"이라 하고 기본 반응(Default Response)를 Block으로 설정하여 수락을 누른다.

 

 

프리셋에 새... 버튼을 클릭해서 새 프로필의 이름을 "Projectile"로 하고, 다음 이미지를 참고해서 콜리전 프리셋을 설정하자.

 

 

새 콜리전 채널 세팅 사용

 

FPSProjectile.cpp의 생성자에서 CollisionComponent 설정 코드의 아래에 다음 줄을 추가한다.

CollisionComponent->BodyInstance.SetCollisionProfileName(TEXT("Projectile"));

 

변경사항을 저장하고 솔루션 탐색기에서 FPSProject를 우클릭해서 빌드를 선택해서 프로젝트를 컴파일한다.

 

 

 

3-4. 월드와 상호작용하는 프로젝타일

 

프로젝타일의 콜리전 상호작용을 감지할 수 있게 되었으니, 이제 그 콜리전에 어떻게 반응할지를 결정할 차례다. 이번 단계에서는 콜리전 이벤트에 반응하는 FPSProjectile에 OnHit() 함수를 추가할 것이다.

 

프로젝타일이 콜리전에 반응하도록 만들기

 

FPSProjectile.h를 열어서 클래스 정의에 다음 코드를 추가한다.

UFUNCTION()
void OnHit(UPrimitiveComponent* HitComponent, AActor* OtherActor, UPrimitiveComponent* OtherComponent, FVector NormalImpulse, const FHitResult& Hit);

 

FPSProjectile.cpp에서 OnHit() 함수의 동작을 구현한다.

void AFPSProjectile::OnHit(UPrimitiveComponent* HitComponent, AActor* OtherActor, UPrimitiveComponent* OtherComponent, FVector NormalImpulse, const FHitResult& Hit)
{
    if (OtherActor != this && OtherComponent->IsSimulatingPhysics())
    {
        OtherComponent->AddImpulseAtLocation(ProjectileMovementComponent->Velocity * 100.0f, Hit.ImpactPoint);
    }
}

 

그리고 FPSProjectile 생성자에 CollisionComponent 생성 코드 뒤에 다음 코드를 추가한다.

CollisionComponent->OnComponentHit.AddDynamic(this, &AFPSProjectile::OnHit);

 

변경사항들을 저장하고 솔루션 탐색기에서 FPSProject에 우클릭한 뒤, 빌드를 선택해서 프로젝트를 컴파일한다.

 

 

프로젝타일 콜리전 테스트

 

빌드 완료 후, 언리얼 에디터로 돌아가서 Floor 스태틱 메시를 복사 & 붙여넣기를 한다.

 

이름이 Floor2인 바작 메시 사본의 비율 고정이 풀렸는지 확인하고 스케일을 {0.2, 0.2, 3.0}으로 설정하고 위치를 {320, 0, 170}으로 조정한다.

 

 

Floor2의 디테일 패널에서 Physics 섹션을 찾은 뒤 Simulate Physics 옵션을 체크한다.

 

 

맵을 저장하고 BP_FPSProjectile을 더블클릭하여 블루프린트 에디터를 열고 컴포넌트 탭에서 ProjectileMeshComponent를 클릭한다.

 

디테일 패널에서 Collision 아래의 Collision Presets 프로퍼티를 Projectile로 설정한다.

 

 

블루프린트를 컴파일, 저장한 뒤 블루프린트 에디터를 닫는다.

 

플레이 버튼을 눌러 PIE 모드에 들어간다. 좌클릭으로 상자를 향해 발사체를 발사하면 상자가 발사체에 맞고 튕겨나가는 모습을 볼 수 있다.

 

 

레벨 에디터에서 중지 버튼을 눌러서 PIE 모드에서 빠져나간다.

 

 

3-5. 뷰포트에 조준선 추가

 

이번 단계에서는 게임에 조준선 HUD 요소를 추가하려 조준할 수 있도록 해보자.

 

조준선 애셋 임포트

 

시작하기에 앞서, 다음 링크에서 샘플 이미지를 다운로드하고 압축을 푼다. "샘플 조준선 이미지"

 

콘텐츠 브라우저의 파일 창에 우클릭하여 /Game에 임포트... 를 눌러서 임포트 대화 상자를 연다.

 

 

crosshair.TGA 이미지 파일을 찾아서 임포트한다.

 

새 HUD 클래스 추가

 

파일 메뉴에서 새로운 C++ 클래스... 을 선택한다.

 

부모 클래스 선택 메뉴가 열리면 HUD 클래스를 찾아서 부모 클래스로 선택하고 다음을 클릭한다.

 

 

클래스 이름에 "FPSHUD"를 입력하고 클래스를 생성한다.

 

 

FPSHUD.h에 다음 변수와 함수 코드를 추가한다.

protected:
    UPROPERTY(EditAnywhere)
    UTexture2D* CrosshairTexture;

public:
    virtual void DrawHUD() override;

 

FPSHUD.cpp에 DrawHUD() 함수를 구현한다.

void AFPSHUD::DrawHUD()
{
    Super::DrawHUD();
   
    if (CrosshairTexture)
    {
        FVector2D Center(Canvas->ClipX * 0.5f, Canvas->ClipY * 0.5f);

        FVector2D CrossHairDrawPosition(Center.X - (CrosshairTexture->GetSurfaceWidth() * 0.5f), Center.Y - (CrosshairTexture->GetSurfaceHeight() * 0.5f));

        FCanvasTileItem TileItem(CrossHairDrawPosition, CrosshairTexture->Resource, FLinearColor::White);
        TileItem.BlendMode = SE_BLEND_Translucent;
        Canvas->DrawItem(TileItem);
    }
}

 

DrawHUD() 함수를 구현할 때, Canvas 기능과 관련해서 불완전한 형식의 클래스에 대한 에러가 발생할 수 있다. 이 부분은 "Engine/Canvas.h"를 포함시켜주면 해결된다.

#include "Engine/Canvas.h"

 

변경사항을 저장하고 솔루션 탐색기에서 FPSProject를 우클릭해서 빌드를 선택하고 프로젝트를 컴파일한다.

 

 

C++ HUD 클래스를 블루프린트로 확장

 

콘텐츠 브라우저에서 FPSHUD 클래스에 우클릭해서 FPSHUD 기반 블루프린트 클래스 생성을 선택한다.

 

 

BP_FPSHUD라는 이름으로 Blueprints 폴더에 블루프린트 클래스를 생성한다.

 

 

기본 HUD 클래스 설정

 

프로젝트 세팅의 맵 & 모드에서 HUD를 새로 생성한 BP_FPSHUD로 설정해준다.

 

 

세팅이 끝났으면 BP_FPSHUD 블루프린트 에디터를 열고 Crosshair Texture를 crosshair로 설정해준다.

 

 

마지막으로, 블루프린트를 저장하고 블루프린트 에디터를 닫는다.

 

HUD 확인

 

레벨 에디터에서 플레이 해보면 새로 추가한 조준선이 보일 것이다.

 

 

레벨 에디터의 중지 버튼을 눌러서 PIE 모드를 빠져나오자.

 

 

 

 

 

 


 

이번 섹션에서 배운 것

 

1. UProjectileMovementComponent

UProjectileMovementComponent* ProjectileMovementComponent;

발사체의 이동을 처리해주는 컴포넌트

ProjectileMovementComponent->InitialSpeed = 3000.0f;

발사체의 초기 속도 변수. 이 값이 0이면 Velocity 값을 속도로 사용하고, 0이 아니면 Velocity 값을 무시한다.

ProjectileMovementComponent->MaxSpeed = 3000.0f;

발사체에 허용되는 최대 속력

ProjectileMovementComponent->bRotationFollowsVelocity = true;

이 값이 참이면, 발사체의 회전이 이동 방향에 맞춰 매 프레임 업데이트된다.

ProjectileMovementComponent->bShouldBounce = true;

이 값이 참이면, 간단한 바운스가 시뮬레이션 된다. 접촉 시뮬레이션을 중지하려면 이 값을 false로 설정한다.

ProjectileMovementComponent->Bounciness = 0.3f;

충돌의 법선 방향으로 반발이 발생한 이후에 유지되는 속도의 비율

ProjectileMovementComponent->Velocity;

발사체의 속도

 

2. AActor

FVector EyeLocation;
FRotator EyeRotation;

GetActorEyesViewPoint(EyeLocation, EyeRotation);

액터의 시점을 가져오는 함수. 이 시점은 액터의 붙은 카메라의 위치와 회전이 아니라 실제 액터의 눈에 해당하는 위치와 회전이다.

InitialLifeSpan = 3.0f;

액터의 수명을 결정하는 변수. 0으로 설정하면 시간이 지나도 소멸하지 않는다. 이 값은 초기 값이기 때문에, 플레이가 시작된 이후에는 수정해서는 안된다.

 

3. FActorSpawnParameters

FActorSpawnParameters SpawnParams;

액터를 스폰할 때 사용되는 매개변수들을 담는 구조체

SpawnParams.Owner;

이 액터를 생성한 액터. 생성한 액터가 따로 없다면 NULL로 둘 수 있다.

 

4. UWorld

GetWorld()->SpawnActor<T>(Class, Location, Rotation, SpawnParams);

월드에 액터를 스폰하는 함수이다.

 

5. UPrimitiveComponent

Target->AddImpulseAtLocation(Impulse, Location);

대상 물체에 충돌 효과를 주는 함수.

 


 

일인칭 슈팅 C++ 프로그래밍 튜토리얼은 이 다음에 한 섹션이 더 남아있지만, 다음 섹션은 프로그래밍 작업보다는 에디터에서 진행되는 애니메이션 작업 튜토리얼이다. 그렇기 때문에 이번 제대로 따라가기 :: 일인칭 슈팅 C++ 튜토리얼은 여기서 끝마친다.

 

다음 섹션을 이어서 배우고 싶디만 링크를 통해서 섹션 4. 캐릭터 애니메이션 추가를 따라가면 된다.

 

[투네이션]

 

-

 

toon.at

[Patreon]

 

WER's GAME DEVELOP CHANNEL님이 Game making class videos 창작 중 | Patreon

WER's GAME DEVELOP CHANNEL의 후원자가 되어보세요. 아티스트와 크리에이터를 위한 세계 최대의 멤버십 플랫폼에서 멤버십 전용 콘텐츠와 체험을 즐길 수 있습니다.

www.patreon.com

[디스코드 채널]

 

Join the 베르의 게임 개발 채널 Discord Server!

Check out the 베르의 게임 개발 채널 community on Discord - hang out with 399 other members and enjoy free voice and text chat.

discord.com

 

반응형

제대로 따라가기 (7) C++ 프로그래밍 튜토리얼 :: 일인칭 슈팅 C++ 튜토리얼 (2)


작성버전 :: 4.21.0

언리얼 엔진 튜토리얼인 일인칭 슈팅 C++ 튜토리얼에서는 C++ 코드 작업을 통해서 기본적인 일인칭 슈팅(FPS) 게임을 만드는 법을 배울 수 있다.

 

이번 튜토리얼은 각 하위 섹션들의 길이가 길어서 분할되어 작성된다.

 

튜토리얼대로 하면 문제가 발생해서 제대로 따라갈 수 없는 부분으로 동작이 가능하게 수정해야하는 부분은 빨간 블럭으로 표시되어 있다.


이번 튜토리얼에서 새로 배우게 되는 내용은 글 제일 끝에 "이번 섹션에서 배운 것"에 정리된다.

 

VisibleDefaultsOnly는 정상적으로 존재하는 UPROPERTY 지정자입니다. 제가 실수로 VisibleDefaultOnly로 오타를 내서 컴파일러가 지정자가 없다고 에러를 띄웠었습니다. 잘못된 정보로 혼동을 드린 점에 대해서 사과드립니다.

 

 

2. 캐릭터 임포트

 

이번 섹션의 목표는 일인칭 슈팅 캐릭터 구현법을 배우는 것이다.

 

 

2-1. 새 캐릭터 만들기(문서)

 

이번 단계에서는 엔진의 Character[각주:1] 베이스 클래스를 사용해서 새 캐릭터를 만들어보자. Character 클래스에는 걷기, 달리기, 점프와 같은 이족보행 동작이 기본 내장되어 있다.

 

캐릭터 클래스 추가

 

파일 드롭다운 메뉴에서 새로운 C++ 클래스... 를 선택해서 새 부모 클래스를 선택한다.

 

 

부모 클래스 선책 창이 열리면 Character 클래스를 부모로 선택하고 다음 버튼을 누른다.

 

 

새 클래스 이름을 "FPSCharacter"라 하고 클래스 생성을 클릭한다.

 

 

FPSCharacter 클래스의 생성이 완료되었다면 FPSCharacter.cpp의 BeginPlay() 함수에 FPSCharacter 클래스가 사용중인지 확인하는 다음 코드를 추가한다.

 

if (GEngine)
{
    GEngine->AddOnScreenDebugMessage(-1, 5.0f, FColor::Red, 
        TEXT("We are using FPSCharacter!"));
}

 

이전 섹션에서도 언급했듯이 전역에 선언된 GEngine 변수를 사용하기 위해서는 "Engine.h"를 포함시켜야 한다. FPSCharacter.cpp의 전처리기 리스트에 "Engine.h" 포함 선언을 추가해주자.

 

#include "Engine.h"

만약 지난 섹션에서 언급한 다른 방식인 "FPSProject.h"에 선언을 추가해두었다면 "FPSProject.h"를 포함시켜주면 된다.

 

#include "FPSProject.h"

 

코드 작성이 끝났다면 변경사항을 저장하고 에디터로 돌아가 컴파일을 진행한다.

 

C++ FPS 캐릭터 클래스를 블루프린트로 확장

 

콘텐츠 브라우저에서 생성된 FPSCharacter 클래스를 찾아서 우클릭한 뒤 FPSCharacter 기반 블루프린트 클래스 생성을 클릭한다.

 

 

BP_FPSCharacter라고 블루프린트 이름을 정하고 Blueprints 폴더를 선택한 뒤, 블루프린트 생성 버튼을 클릭한다.

 

 

기본 폰 클래스 설정

 

새로운 캐릭터 클래스를 블루프린트로 확장했으니, 이제 이 BP_FPSCharacter를 기본 폰으로 사용하도록 설정할 차례다.

 

프로젝트 세칭 창을 열고 프로젝트 섹셩에 맵 & 모드에서 Default Pawn Class 항목을 BP_FPSCharacter로 설정한다.

 

 

 

세팅이 끝났다면 프로젝트 세팅 창을 닫고 레벨 에디터에서 플레이 버튼을 클릭해서 PIE 모드로 들어가보자. 뷰포트 좌상단에 원래의 로그 메시지와 함께 새로 추가한 "We are using FPSCharacter!"라는 문구가 빨간색으로 5초간 표시될 것이다.

 

 

아직 이동에 대한 기능을 전혀 만들지 않았기 때문에 WASD를 사용해도 움직이지 않는 것이 정상적이며 FPSCharacter가 제대로 적용된 것이다.

 

다음 단계로 넘어가기 전에 Esc키를 눌러 PIE 모드에서 빠져나오자.

 

 

2-2. 축 매핑 구성(문서)

 

일반적으로 축 매핑(Axis Mappings)을 통해서 키보드, 마우스, 컨트롤러 입력을 "친근한 이름"으로 매핑시킨뒤 나중에 이동 등의 게임 동작에 바인딩할 수 있다. 축 매핑은 지속적으로 폴링되어, 부드러운 전환 및 게임 동작이 가능하다. 컨트롤러의 조이스틱 같은 하드웨어 축은 "눌렸다", "안눌렸다" 같은 식의 구분되는 입력이 아닌 연속적인 입력 수치를 제공한다. 컨트롤러 조이스틱 입력 방법이 스케일식 동작 입력을 제공해 주기는 하지만, 축 매핑으로 WASD 처럼 지속적 폴링되는 게임 동작을 위한 일반 이동 키 매핑도 가능하다.

 

프로젝트 세팅 창을 열고 엔진 섹션의 입력을 선택한다. 그리고 입력 매핑 세팅을 다음처럼 구성한다.

 

 

 

2-3. 캐릭터 동작 함수 구현(문서)

 

이번 단계에서는 Player Input Component를 구성하고, FPSCharacter 클래스에 다음 함수들을 구현한다.

 

MoveForward();

MoveRight();

 

무브먼트 함수 인터페이스

 

에디터에서 축 매핑을 구성했으니, 매핑에 바인딩할 함수들을 구현하자.

 

FPSCharacter.h에서 클래스 하단부에 다음 함수들의 선언을 추가한다.

 

UFUNCTION()
void MoveForward(float AxisValue);

UFUNCTION()
void MoveRight(float AxisValue);

 

함수 위에 붙여준 UFUNCTION() 매크로는 엔진에게 이 함수들을 인식시켜 직렬화(Serialization), 최적화, 기타 엔진 함수성에 포함될 수 있도록 해준다.

 

동작 함수 구현

 

전형적인 FPS 조작법에서, 캐릭터의 동작 축은 카메라에 상대적이다. "전방"이란 "카메라가 향하는 방향"을, "우측"이란 "카메라가 향하는 방향의 우측"을 뜻한다. 캐릭터의 제어 방향을 구하는 데는 PlayerController를 사용할 것이다. 또한 MoveForward() 함수는 제어 회전의 피치 컴포넌트를 무시하고 입력을 XY 면으로 제한시켜 위아래를 쳐다보더라도 캐릭터는 땅과 평행으로 움직일 수 있도록 한다.

 

FPSCharacter.cpp에서 AFPSCharacter::SetupPlayerInputComponent() 함수의 하단에 다음 코드를

 

InputComponent->BindAxis("MoveForward", this, &AFPSCharacter::MoveForward);
InputComponent->BindAxis("MoveRight", this, &AFPSCharacter::MoveRight);

 

그리고 MoveForward()함수와 MoveRight()함수를 구현한다.

 

void AFPSCharacter::MoveForward(float AxisValue)
{
    FVector Direction = FRotationMatrix(Controller->GetControlRotation()).GetScaledAxis(EAxis::X);
    AddMovementInput(Direction, AxisValue);
}

void AFPSCharacter::MoveRight(float AxisValue)
{
    FVector Direction = FRotationMatrix(Controller->GetControlRotation()).GetScaledAxis(EAxis::Y);
    AddMovementInput(Direction, AxisValue);
}

 

캐릭터 동작 테스트하기

 

구현이 모두 끝났다면, 변경사항들을 저장하고 에디터로 넘어가서 컴파일을 한다.

 

컴파일이 끝나면 플레이 버튼을 눌러서 PIE 모드를 실행한 뒤, WASD 키를 눌러서 캐릭터가 전후좌우로 움직이는지 확인해보자.

 

성공적으로 움직인다면 Esc를 눌러서 PIE 모드를 빠져나오고 다음 파트로 넘어간다.

 

 

 

 

 

2-4. 마우스 카메라 컨트롤 구현(문서)

 

이번 단계에서는 캐릭터의 시야 및 이동 방향을 마우스로 조정하는 기능을 추가한다.

 

마우스 축 매핑 추가

 

프로젝트 세팅 창에서 입력 매핑을 다음과 같이 추가한다.

 

 

입력 처리 구현

 

회전과 쳐다보기에 대한 마우스 입력 처리를 하는 코드를 추가할 차례이다. Character 베이스 클래스는 카메라 회전 컨트롤에 대해서 다음과 같은 필수 함수 둘을 제공한다. 그렇기 때문에 FPSCharacter 클래스에 별도의 함수를 정의하고 구현할 필요없이 바로 AFPSCharacter::SetupPlayerInputComponent() 함수에 바인딩하는 코드를 추가하면 된다.

 

InputComponent->BindAxis("Turn", this, &AFPSCharacter::AddControllerYawInput);
InputComponent->BindAxis("LookUp", this, &AFPSCharacter::AddControllerPitchInput);

 

마우스 카메라 컨트롤 테스트

 

변경 사항들을 저장하고 에디터로 넘어가서 컴파일을 진행한 뒤, 플레이 버튼을 누르고 카메라를 움직여서 카메라가 회전하는 것을 확인해보자.

 

확인을 마쳤다면 Esc를 눌러서 PIE 모드에서 빠져나온다.

 

 

2-5. 캐릭터 점프 구현(문서)

 

액션 매핑은 별도의 이벤트에 대한 입력을 다루며, "친근한 이름"에 매핑시켜 나중에 이벤트 주도형 동작에 바인딩시킬 수 있도록 해준다. 최종 효과는 키나 마우스 버튼, 혹은 키패드 버튼에 대해서 누르기/떼기를 통해서 게임 동작을 실행시키도록 하는 거이다.

 

이번 단계에서는, 스페이스 바에 대한 액션 매핑을 구성하여 캐릭터에 점프 능력을 추가하는 것이다.

 

점프 액션 매핑

 

프로젝트 세팅 창을 열고 엔진 섹션에서 입력을 선택한다. 그리고 액션 매핑을 다음과 같이 추가한다.

 

 

입력 처리 구현

 

Character 베이스 클래스의 인터페이스(*.h) 파일 안을 보면, 캐릭터 점프에 대한 지원이 내장되어 있는 것을 볼 수 있다. 캐릭터 점프는 bPressedJump 변수에 묶여 있어서, 점프 키를 누르면, 이 변수를 true로, 떼면 false로 설정해주기만 하면 된다.

 

FPSChararcter.h에 다음 두 함수의 선언을 추가한다.

 

UFUNCTION()
void StartJump();

UFUNCTION()
void StopJump();

 

그리고 FPSCharacter.cpp에 함수의 구현을 추가해준다.

 

void AFPSCharacter::StartJump()
{
    bPressedJump = true;
}

void AFPSCharacter::StopJump()
{
    bPressedJump = false;
}

 

구현이 끝났으면 SetupPlayerInputComponent() 함수에 바인딩 코드를 추가한다.

 

InputComponent->BindAction("Jump", IE_Pressed, this, &AFPSCharacter::StartJump);
InputComponent->BindAction("Jump", IE_Released, this, &AFPSCharacter::StopJump);

 

캐릭터 점프 테스트

 

변경 사항을 저장하고, 에디터로 돌아가서 컴파일 한다. 그리고 플레이 버튼을 눌러서 PIE에 들어가서 스페이스 바를 눌러서 캐릭터의 점프가 정상적으로 동작하는지 확인해보자.

 

점프가 정상적으로 동작한다면 Esc키를 눌러서 PIE 모드에서 빠져나온다.

 

 

2-6. 캐릭터에 메시 추가(문서)

 

이번 단계에서는 캐릭터에 스켈레탈 메시를 추가한다. Character 클래스는 기본적으로 우리가 쓸 SkeletalMeshComponent를 생성해 주므로, 어떤 스켈레탈 메시를 사용할지 알려주기만 하면 된다.

 

이 튜토리얼에서 사용되는 기본 스켈레탈 메시는 파트 제목 옆에 문서 링크를 통해서 들어가면 샘플 메시라는 링크에서 받을 수 있다.

 

스켈레탈 메시 임포트

 

콘텐츠 브라우저의 콘텐츠 폴더에 들어가서 파일 창에 우클릭하여 /Game에 임포트... 를 선택해서 임포트 대화창을 연다.

 

 

아까 다운받아서 압축해제한 GenericMale.fbx 메시 파일을 찾아 선택하고 열기를 클릭하여 메시를 프로젝트에 임포트 시작한다.

 

콘텐츠 브라우저에서 FBX 임포트 옵션 대화창이 뜬다. 임포트를 클릭하면 프로젝트에 메시가 추가된다.

 

저장 버튼을 클릭해서 임포트된 메시를 저장한다.

 

삼인칭 메시 구성

 

BP_FPSCharacter 아이콘을 더블클릭해서 블루프린트 에디터를 열고 컴포넌트 탭에서 Mesh 컴포넌트를 선택한다.

 

 

디테일 패널의 메시 섹션으로 스크롤해 내려가서 없음이라고 되어있는 드롭다운 메뉴를 클릭해서 GenericMale 스켈레탈 메시를 선택해서 넣는다.

 

 

Z 위치를 -88.0으로 설정해서 SkeletalMeshComponent를 CapsuleComponent에 정렬시킨다.

 

 

SkeletalMeshComponent는 다음과 같은 상태일 것이다.

 

 

 

일반적으로 CapsuleComponent안에 SkeletalMeshComponent이 포함되고, ArrowComponent와의 방향이 일치해야 캐릭터가 월드에서 정상적으로 돌아다닐 수 있다.

 

스켈레탈 메시 설정이 끝났다면 BP_FPSCharacter 블루프린트를 컴파일하고 저장한 뒤에 블루프린트 에디터를 닫자.

 

PIE 모드에서 새 메시 확인

 

레벨 에디터에서 플레이 버튼을 클릭하면 캐릭터를 따라오는 메시의 그림자가 보일 것이다.

 

 

Esc를 눌러 PIE 모드를 빠져나오자.

 

 

 

 

 

2-7. 카메라 뷰 변경(문서)

 

이전 단계에서 살펴보았을 때, 별도의 설정을 하지 않은 기본 카메라의 위치는 메시의 목 안쪽에 위치했었다. 이번 단계에서는 카메라(위치나 시야같은) 프로퍼티 조정에 사용할 수 있는 적합한 FPS 카메라를 구성해보자.

 

카메라 컴포넌트 붙이기

 

FPSCharacter.h에 다음 코드를 추가한다.

 

UPROPERTY(VisibleAnywhere)
UCameraComponent* FPSCameraComponent;

 

그리고 FPSCharacter.cpp의 AFPSCharacter::AFPSCharacter() 생성자 함수에 다음 코드를 추가해준다.

 

FPSCameraComponent = CreateDefaultSubobject<UCameraComponent>(TEXT("FirstPersonCamera"));
FPSCameraComponent->SetupAttachment(GetCapsuleComponent());
FPSCameraComponent->SetRelativeLocation(FVector(0.0f, 0.0f, 50.0f + BaseEyeHeight));
FPSCameraComponent->bUsePawnControlRotation = true;

 

이 코드는 카메라의 위치를 캐릭터의 눈 살짝 위쪽으로 잡으면서 폰이 카메라 로테이션을 제어할 수 있도록 해준다.

 

 

이대로 빌드하면 Camera Component에서 에러가 발생해서 컴파일에 실패할 수 있다. 코드를 작성할 때는 에러가 뜨지 않아서 방심했지만 이 에러는 충분이 아는 에러일 것이다. 지금 비주얼 스튜디오가 한글 버전이라 로그가 깨져있지만 튜토리얼을 진행하면서 생긴 경험으로 미루어 짐작하건데, 헤더의 30라인에서 발생하는 에러는 UCameraComponent가 정의되지 않았다는 에러일 것이다. UCameraComponent 선언 앞에 class를 붙여주자.

 

UPROPERTY(VisibleAnywhere)
class UCameraComponent* FPSCameraComponent;

 

새 카메라 테스트

 

변경사항을 저장하고, 에디터에서 컴파일한 후, 플레이 버튼을 눌러서 테스트 해보자.

 

 

2-8. 캐릭터에 일인칭 메시 추가(문서)

 

FPS에서 흔히 사용되는 방법은, 전신 바디 메시 하나, 무기와 손 메시하나, 이렇게 별개의 캐릭터 메시 두 개를 사용하는 것이다. 전신 메시는 삼인칭 시첨에서 캐릭터를 보거나 다른 캐릭터를 볼대 사용되고, 플레이어가 일인칭 시점에서 게임을 볼 때는 이 전신 메시를 숨긴다. 그리고 "무기와 손" 메시는 전형적으로 카메라에 붙여 플레이어가 일인칭 시점에서 맵을 볼 때 플레이어에게만 보이는 것이다. 이 파트에서는 캐릭터에 일인칭 메시를 추가해보자.

 

일인칭 캐릭터 메시 추가

 

비주얼 스튜디오로 이동해서 FPSCharacter.h를 열고 다음 코드를 추가한다.

 

UPROPERTY(VisibleDefaultsOnly, Category = "Mesh")
USkeletalMeshComponent* FPSMesh;

 

그리고 FPSCharacter.cpp의 AFPSCharacter::AFPSCharacter() 생성자 함수에 다음 코드를 추가하여 일인칭 메시를 생성하고 설정해준다.

 

FPSMesh = CreateDefaultSubobject<USkeletalMeshComponent>(TEXT("FirstPersonMesh"));
FPSMesh->SetOnlyOwnerSee(true);
FPSMesh->SetupAttachment(FPSCameraComponent);
FPSMesh->bCastDynamicShadow = false;
FPSMesh->CastShadow = false;

 

SetOnlyOwnerSee는 이 메시가 이 Character에 빙의(Possession)한 PlayerController에게만 보인다는 의미다. 이 코드는 메시를 카메라에 붙이고 배경 그림자를 끈다. 만약 카메라에 붙은 팔의 그림자가 보이면 기괴한 모습이 될 것이다.

 

그 아래쪽에 다음 코드를 추가하여 소유 캐릭터에서 기존 삼인칭 메시를 숨긴다.

 

GetMesh()->SetOwnerNoSee(true);

 

이제 코드의 변경 사항을 저장하고 에디터로 돌아가서 컴파일을 진행한다.

 

만약 에디터 컴파일로 곧바로 변경 사항이 반영되지 않는다면 에디터를 종료하고 솔루션 탐색기에서 FPSProject를 찾아서 우클릭하고 빌드(Build)를 선택해서 프로젝트를 새로 빌드하고 다시 실행하면 변경 사항이 반영된다.

 

 

빌드 완료 후, PIE 모드에서 살펴보면 캐릭터의 메시가 더 이상 보이지 않는 것을 알 수 있다.

 

 

메시 블루프린트 빌드

 

계속하기 전에, 다음 링크에서 샘플 메시를 다운로드해서 압축을 풀어야 한다. "일인칭 스켈레탈 메시"

 

콘텐츠 브라우저의 콘텐츠 파일창에서 우클릭해서 /Game에 임포트를 선택한다.

 

 

HeroFPP.fbx 메시 파일을 찾아 임포트 한다.

 

콘텐츠 브라우저에서 Blueprints 폴더로 들어가서 BP_FPSCharacter 아이콘을 더블클릭해서 블루프린트 에디터를 연다.

 

컴포넌트 탭에서 FPSMesh 컴포넌트를 찾는다.

 

 

FPSMesh 컴포넌트는 FPSCameraComponent의 자손이라, 카메라에 항상 붙어있다.

 

컴포넌트 탭에서 FPSMesh를 클릭한다.

 

디테일 탭에서 Mesh 섹션으로 스크롤해 내려가서 "없음"이라는 드롭다운 메뉴를 클릭해서 HeroFPP 스켈레탈 메시를 선택하여 뷰포트에 팔을 추가한다.

 

 

 

새로 추가된 HeroFPP 스켈레탈 메시는 뷰포트 안에서 다음과 같이 보일 것이다.

 

 

새로 추가된 메시의 트랜스폼이 카메라 앞에 오도록 조절한다. 위치를 로, 회전을 {-180, 50, -180}으로 설정한다.

 

 

블루프린트 에디터를 닫기 전에 BP_FPSCharacter 블루프린트를 반드시 컴파일하고 저장하자.

 

게임 내 새 메시 확인

 

레벨 에디터에서 플레이 버튼을 클릭해서 게임 내에서 새 메시를 확인한다.

 

 

Esc키를 눌러서 PIE 모드에서 빠져나오자.

 

다음 섹션에서는 발사체(Projectile) 구현법을 배워보자.

 


 

이번 섹션에서 배운 것

 

1. FRotatorMatrix

 

FRotatorMatrix RotatorMatrix;

 

행렬에서 이동 행렬을 뺀 순수하게 회전에 대한 행렬이다.

 

RotatorMatrix.GetScaledAxis(EAxis::X);

 

행렬의 크기에 의해서 스케일링된 행렬의 축을 가져오는 함수

 

2. ACharacter

 

Controller;

 

캐릭터를 제어하는 컨트롤러에 대한 변수

 

Controller->GetControlRotation();

 

컨트롤 회전을 가져오는 함수. 이것은 카메라 방향(예 : 3 인칭보기)과 다를 수 있는 완전한 목표 회전이며 제어된 Pawn (시각적으로 피치를 두거나 롤하지 않도록 선택할 수 있음)의 회전과 다를 수 있다.

 

AddControllerYawInput();

 

캐릭터 클래스에서 기본적으로 지원하는 Yaw 회전 처리 함수. 이 함수를 마우스 좌우 이동 입력과 바인딩하면 카메라 좌우 회전하는 기능을 만들 수 있다.

 

AddControllerPitchInput();

 

캐릭터 클래스에서 기본적으로 지원하는 Pitch 회전 처리 함수.

 

bPressedJump = true;

 

캐릭터 클래스에서 기본적으로 지원하는 점프 처리 변수. true가 되면 캐릭터 클래스에서 자동으로 점프를 처리해준다.

 

3. UCameraComponent

 

CameraComponent->bUsePawnControlRotation = true;

 

이 카메라 컴포넌트가 폰의 컨트롤 회전을 따라서 회전할 지를 결정하는 변수

 

4. USkeletalMeshComponent

 

USkeletalMeshComponent* SkeletalMeshComponent;

 

애니메이션을 사용할 수 있는 스켈레탈 메시 애셋의 인스턴스를 만드는데 사용되는 컴포넌트.

 

SkeletalMeshComponent->SetOnlyOwnerSee(true);

 

UPrimitiveComponent 클래스에서 상속받은 함수로 이 메시를 소유한 플레이어만 이 메시를 볼 수 있게 하는 함수

 

SkeletalMeshComponent->bCastDynamicShadow = false;

 

사전에 계산되지 않은 실시간 그림자를 그려야하는지에 대한 변수. CastShadow가 true일 때만 작동한다.

 

SkeletalMeshComponent->CastShadow = false;

 

그림자를 그려야하는지에 대한 변수

 

SkeletalMeshComponent->SetOwnerNoSee(true);

 

이 메시를 소유한 플레이어에게만 보이지 않도록 하는 함수

 

  1. Pawn 클래스에서 파생되었다. [본문으로]

[투네이션]

 

-

 

toon.at

[Patreon]

 

WER's GAME DEVELOP CHANNEL님이 Game making class videos 창작 중 | Patreon

WER's GAME DEVELOP CHANNEL의 후원자가 되어보세요. 아티스트와 크리에이터를 위한 세계 최대의 멤버십 플랫폼에서 멤버십 전용 콘텐츠와 체험을 즐길 수 있습니다.

www.patreon.com

[디스코드 채널]

 

Join the 베르의 게임 개발 채널 Discord Server!

Check out the 베르의 게임 개발 채널 community on Discord - hang out with 399 other members and enjoy free voice and text chat.

discord.com

 

반응형

제대로 따라가기 (6) C++ 프로그래밍 튜토리얼 :: 일인칭 슈팅 C++ 튜토리얼 (1)

작성버전 :: 4.21.0

 


언리얼 엔진 튜토리얼인 일인칭 슈팅 C++ 튜토리얼에서는 C++ 코드 작업을 통해서 기본적인 일인칭 슈팅(FPS) 게임을 만드는 법을 배울 수 있다.

 

이번 튜토리얼은 각 하위 섹션들의 길이가 길어서 분할되어 작성된다.

 

튜토리얼대로 하면 문제가 발생해서 제대로 따라갈 수 없는 부분으로 동작이 가능하게 수정해야하는 부분은 빨간 블럭으로 표시되어 있다.


이번 튜토리얼에서 새로 배우게 되는 내용은 글 제일 끝에 "이번 섹션에서 배운 것"에 정리된다.

 

1. 프로젝트 구성

 

1-1. 프로젝트 구성(문서)

 

언리얼 엔진을 실행하고 프로젝트 브라우저에서 새 프로젝트 탭에서 C++탭을 선택한다.

 

기본 코드(Basic Code)를 선택하고 프로젝트 이름을 "FPSProject"[각주:1]로 입력한다. "시작용 콘텐츠 없음"으로 하여 프로젝트를 생성한다.

 

 

언리얼 에디터에서 프로젝트가 열리면, 플레이 버튼을 눌러서 에디터에서 플레이(PIE, Play In Editor) 모드로 들어가본다. WASD키를 이용해서 이동하거나 마우스를 이용해서 화면의 방향을 전환할 수 있다.

 

 

Esc키를 누르거나, 중지 버튼을 눌러서 PIE 모드를 빠져나간다.

 

 

레벨 탐험을 마쳤다면 Contents 폴더 안에 Maps 폴더를 생성한다.

 

 

파일 메뉴에서 현재 레벨을 다른 이름으로 저장... 을 선택하여 레벨을 Maps 폴더에 "FPSMap"으로 저장한다.

 

 

편집 메뉴에서 프로젝트 세팅을 클릭한다.

 

 

프로젝트 세팅 창에서 프로젝트 섹션의 맵 & 모드에 Editor Startup Map을 우리가 만든 FPSMap으로 설정해준다.

 

 

프로젝트 세팅 창을 닫고, 프로젝트를 저장한 뒤, 다음 단계로 이동하자.

 

 

1-2. Visual Studio에서 프로젝트 열기(문서)

 

Game Mode는 게임의 규칙과 승리 조건등을 정의하는 클래스로, 프로젝트를 구성할 때, 언리얼 엔진이 기본 Game Mode 클래스를 생성해주었다. 우리는 이 Game Mode에 기본 게임플레이 프레임워크 유형에 사용될 기본 클래스를, Pawn, PlayerController, HUD 등을 포함해서 설정할 계획이다. 이 파트에서는 에디터를 통해서 비주얼 스튜디오를 열고 거기서 프로젝트의 Game Mode 클래스를 확인해 볼 것이다.

 

언리얼 에디터의 파일 메뉴에서 Visual Studio 열기를 선택하여 비주얼 스튜디오를 연다.

 

 

비주얼 스튜디오가 열리면, 솔루션 탐색기를 통해서 프로젝트에 포함된 소스파일(.cpp)과 헤더파일(.h)가 보인다.

 

 

FPSProjectGameMode.cpp 안에 다음과 같은 코드가 있을 것이다.

 

#include "FPSProject.h"
#include "FPSProjectGameMode.h"

 

언리얼 엔진이 버전업 되면서 프로젝트에 자동 생성되는 Game Mode 클래스명 끝에 Base가 붙도록 변경되었다. 그래서 열어봐야할 소스파일의 이름은 "FPSProjectGameModeBase.cpp가 된다. 이것은 헤더파일에도 포함되는 것이다.

 

그리고 처음에 불필요한 빌드 및 컴파일 시간은 줄이기 위해서 기본적으로 필요한 헤더를 제외한 헤더의 포함을 최소화 하도록 변경되었기 때문에 FPSProjectGameModeBase.cpp 파일의 전처리기에 "FPSProject.h"가 포함되어 있지 않을 것이다. 그렇기 때문에 소스파일의 내용은 다음과 같을 것이다.

 

#include "FPSProjectGameModeBase.h"

 

다음 부분 부터는 FPSProjectGameModeBase를 기준으로 설명할 것이다.

 

FPSProjectGameModeBase.h 안에는 다음과 같은 코드가 있다.

 

#pragma once

#include "CoreMinimal.h"
#include "GameFramework/GameModeBase.h"
#include "FPSProjectGameModeBase.generated.h"

/**
 *
 */
UCLASS()
class FPSPROJECT_API AFPSProjectGameModeBase : public AGameModeBase
{
    GENERATED_BODY()
};

 

이제 프로젝트에 코드를 추가할 준비가 완료되었다.

 

 

 

 

 

1-3. 로그 메시징 추가(문서)

 

이 파트에서는 로그 메시지를 사용해서 언리얼 엔진에서 제공되는 기본 Game Mode가 아닌 FPSProjectGameModeBase가 실제로 사용되는지 점검해볼 것이다. 로그 메시지는 개발 도중 코드를 점검하고 디버깅하는데 쓰이는 유용한 도구이다.

 

FPSProjectGameModeBase.h의 클래스 선언 하단에 다음 함수 선언을 추가하자.

 

public:
    virtual void StartPlay() override;

 

그리고 FPSProjectGameModeBase.cpp로 가서 함수의 구현을 작성한다.

 

void AFPSProjectGameModeBase::StartPlay()
{
    Super::StartPlay();

    if (GEngine)
    {
        GEngine->AddOnScreenDebugMessage(-1, 5.0f, FColor::Yellow, TEXT("Hello World, this is FPSGameMode!"));
    }
}

 

이 부분에서는 GEngine이 정의되지 않았다는 문제가 발생할 것이다. 이 문제는 FPSProjectGameModeBase.cpp의 전처리기 파트에 "Engine.h"를 포함시켜주면 해결된다.

 

참고로 이 Engine 헤더는 덩치가 꽤나 큰 헤더기 때문에 필요할 때마다 이곳 저곳에서 포함시켜서 사용하는 것보다는 "FPSProject.h" 같은 헤더에 미리 선언해두고 이 "FPSProject.h"를 포함시켜서 사용하는 편이 좋을 수 있다.

 

#include "Engine.h"

 

코드 작성이 모두 끝났다면 변경사항들을 저장하고 에디터로 넘어간다.

 

 

1-4. 프로젝트 컴파일(문서)

 

이 파트에서는 프로젝트를 컴파일하여 코드 변경사항을 게임에 반영시켜볼 것이다.

 

에디터로 돌아왔다면, 컴파일 버튼을 클릭해서 코드를 컴파일한다.

 

 

플레이 버튼을 눌러서 PIE모드에 들어가서 화면에 로그가 뜨는지 확인해보자.

 

 

하지만 PIE 모드에 들어가도, 화면에 로그가 나타나지 않을 것이다. 그 이유는 아직 기본 Game Mode를 사용하고 우리가 만든 FPS Game Mode를 적용하지 않았기 때문이다.

 

그럼 이제, Esc를 눌러 PIE 모드를 중지하고 다음 단계로 넘어가자.

 

CPP Game Mode 클래스를 블루프린트로 확장

 

먼저, 콘텐트 브라우저의 콘텐츠 폴더 안에 Blueprints 폴더를 만든다.

 

 

C++클래스/FPSProject 폴더 안의 FPSGameModeBase 클래스를 우클릭해서 "FPSProjectGameModeBase 기반 블루프린트 클래스 생성"을 선택한다.

 

 

새 블루프린트 클래스의 이름을 BP_FPSProjectGameModeBase로 짓고, Blueprints 폴더를 선택한 뒤, 블루프린트 클래스 생성 버튼을 누른다.

 

 

새로 생성한 블루프린트 클래스가 Blueprints 폴더에 생긴 것을 볼 수 있다. 블루프린트를 저장하고 블루프린트 에디터를 닫자.

 

 

 

1-5. 디폴트 게임 모드 설정(문서)

 

새로 만든 게임 모드를 블루프린트로 확장시키는데 성공했으니, 이번 파트에서는 프로젝트가 FPSProjectGameModeBase를 기본 게임 모드로 사용하도록 설정해줘야 한다.

 

편집 메뉴에서 프로젝트 세팅창을 연다.

 

프로젝트 세팅 창이 열리면 프로젝트 섹션 아래의 맵 & 모드를 선택하고 Default GameMode 드롭다운에서 BP_FPSProjectGameModeBase를 선택한다.

 

 

프로젝트 세팅 메뉴를 닫고 레벨 에디터의 플레이 버튼을 클릭하면 뷰포트 좌상단 구성에서 "Hello World, this is FPSGameMode!" 라는 문구가 5초간 노란색으로 표시되는 것을 볼 수 있다.

 

 

 

 

이제 프로젝트 구성이 끝났다. 다음 섹션에서부터는 캐릭터를 구현하는 방법을 배우게 될 것이다.

 

 

 

 

 

 


 

이번 섹션에서 배운 것

 

1. AGameMode

 

StartPlay();

 

플레이가 시작되었을 때, 게임 모드에서 액터들의 BeginPlay() 함수를 호출하는 역할.

 

2. GEngine

 

GEngine;

 

전역에 선언되어 있는 엔진 포인터. 사용하기 위해서는 "Engine.h"를 포함해줘야 한다. 엔진에서 실행되는 경우가 아닐 경우, 값이 유효하지 않을 수 있으니 사용하기 전에 반드시 GEngine이 유효한 상태인지 체크하고 사용해야한다.

 

GEngine->AddOnScreenDebugMessage(-1, 5.0f, FColor::Yellow, TEXT("Hello World, this is FPSGameMode!"));

 

뷰포트에 디버그 메시지를 띄우는데 사용되는 함수

 

3. FColor

 

FColor Color;

 

언리얼 엔진에서 색상으로 표현하는데 사용되는 구조체

 

FColor::Red;
FColor::Blue;
FColor::Green;
FColor::Black;
FColor::White;
FColor::Cyan;
FColor::Emerald;
FColor::Magenta;
FColor::Orange;
FColor::Purple;
FColor::Silver;
FColor::Transparent;
FColor::Turquoise;
FColor::Yellow;

 

언리얼 엔진에서는 기본적인 색상을 스태틱으로 미리 만들어서 사용자가 일일이 구조체를 생성해서 색상을 만들 필요가 없게 만들어 두었다.

 

 

  1. 다른 이름을 사용해도 상관없지만, 만약 다른 이름을 사용한다면 몇몇 코드 샘플에서의 이름이 달라질 것이다. [본문으로]

[투네이션]

 

-

 

toon.at

[Patreon]

 

WER's GAME DEVELOP CHANNEL님이 Game making class videos 창작 중 | Patreon

WER's GAME DEVELOP CHANNEL의 후원자가 되어보세요. 아티스트와 크리에이터를 위한 세계 최대의 멤버십 플랫폼에서 멤버십 전용 콘텐츠와 체험을 즐길 수 있습니다.

www.patreon.com

[디스코드 채널]

 

Join the 베르의 게임 개발 채널 Discord Server!

Check out the 베르의 게임 개발 채널 community on Discord - hang out with 399 other members and enjoy free voice and text chat.

discord.com

 

반응형

제대로 따라가기 (5) C++ 프로그래밍 튜토리얼 :: UMG와 유저 인터페이스

 


작성버전 :: 4.21.0

언리얼 엔진 튜토리얼인 UMG와 유저 인터페이스에서는 언리얼 모션 그래픽(UMG)을 사용해서 여러가지 화면과 버튼이 있는 기본적인 메뉴 시스템을 만드는 법을 배울 수 있다.

 

튜토리얼대로 하면 문제가 발생해서 제대로 따라갈 수 없는 부분으로 동작이 가능하게 수정해야하는 부분은 빨간 블럭으로 표시되어 있다.


이번 튜토리얼에서 새로 배우게 되는 내용은 글 제일 끝에 "이번 섹션에서 배운 것"에 정리된다.

 

 

1. UMG용 모듈 종속성 구성(문서)

 

C++탭에서 기본 코드를 선택하고 "HowTo_UMG"라는 이름으로 프로젝트를 새로 생성한다.

 

 

언리얼 모션 그래픽(UMG)을 사용하는 코드를 작성할 것이기 때문에 비주얼 스튜디오(Visual Studio)에 들어가서 기본으로 포함되어 있지 않은 몇 가지 모듈을 포함시키도록 하자.

 

언리얼 에디터의 파일 드롭다운 메뉴에서 Visual Studio 열기를 선택해서 비주얼 스튜디오를 연다.

 

 

UMG는 몇 가지 모듈에 종속되어 있는데, 그 모듈을 "HowTo_UMG.Build.cs"에 추가해야 한다.

 

 

"HowTo_UMG.Build.CS"에서 포함된 퍼블릭 모듈 목록에 "UMG"를, 포함된 프라이빗 모듈 목록에 "Slate" 와 "SlateCore" 를 추가해야 한다.

 

PublicDependencyModuleNames에 UMG를 다음과 같이 추가한다.

 

PublicDependencyModuleNames.AddRange(new string[] { "Core", "CoreUObject", "Engine", "InputCore", "UMG" });

 

비어있는 PrivateDependencyModuleNams를 주석 처리하고 "Slate"와 "SlateCore"가 있는 부분을 주석 해제 한다.

 

//PrivateDependencyModuleNames.AddRange(new string[] {  });

// Uncomment if you are using Slate UI
PrivateDependencyModuleNames.AddRange(new string[] { "Slate", "SlateCore" });

 

UMG 구성이 완료되었다면, 프로젝트의 커스텀 게임 모드에 코드를 추가하여 게임 메뉴를 만들고 표시할 수 있다.

 

 

2. 게임 모드 확장(문서)

 

게임이 시작되면 유저 위젯(User Widget)을 새로 만들어 표시하거나, 나중에 제거할 수 있도록 하기 위해서 Game Mode(게임 모드) 클래스에 함수와 프로퍼티를 추가하자. 각 프로젝트에는 커스텀 게임 모드 클래스가 딸려오므로, HowTo_UMGGameMode.h에 다음 코드를 추가하면 된다.

 

버전이 바뀌면서 GameMode 클래스 파일의 이름이 "ProjectNameGameMode.h", "ProjectNameGameMode.cpp"에서 "ProjectNameGameModeBase.h", "ProjectNameGameModeBase.cpp"로 바뀌었다. 비주얼 스튜디오의 솔루션 탐색기에서 HowTo_UMGGameModeBase.h를 열어서 작업하자.

 

public:
    UFUNCTION(BlueprintCallable, Category = "UMG_Game")
    void ChangeMenuWidget(TSubclassOf NewWidgetClass);

protected:
    virtual void BeginPlay() override;

    UPROPERTY(EditAnywhere, BlueprintReadOnly, Category = "UMG_Game")
    TSubclassOf StartingWidgetClass;

    UPROPERTY()
    UUserWidget* CurrentWidget;

 

TSubclassOf 클래스를 사용할 때, [클래스 템플릿 "TSubclassOf"에 대한 인수 목록이 없다]는 에러가 발생한다. 전체 코드를 보고 유추해보건데, BeginPlay() 함수에서 StartingWidgetClass의 내용물을 CurrentWidget 변수에 넣어주거나 ChangeMenuWidget() 함수가 동작할 때, 매개변수로 받은 NewWidgetClass를 CurrentWidget에 대입해주는 방식으로 동작할 것임을 알 수 있다. 그렇기 때문에 여기에서는 TSubclassOf의 템플릿 인수로 UUserWidget 타입을 넣어주는 것이 올바른 해결책일 것이다.

 

다음과 같이 코드를 수정해주자.

 

public:
    UFUNCTION(BlueprintCallable, Category = "UMG_Game")
    void ChangeMenuWidget(TSubclassOf<UUserWidget> NewWidgetClass);

protected:
    virtual void BeginPlay() override;

    UPROPERTY(EditAnywhere, BlueprintReadOnly, Category = "UMG_Game")
    TSubclassOf<UUserWidget> StartingWidgetClass;

 

이제 HowTo_UMGGameModeBase.cpp로 가서, 선언한 두 함수의 구현을 해야 한다. 우선 BeginPlay()를 덮어쓰는 것으로 시작하자.

 

void AHowTo_UMGGameModeBase::BeginPlay()
{
    Super::BeginPlay();
    ChangeMenuWidget(StartingWidgetClass);
}

 

부모 클래스의 함수를 덮어쓸 때는, 여기 BeginPlay에서 하듯이 해당 함수의 부모 클래스 버전을 호줄하는 것이 중요한 경우가 많다. 우리가 구현하는 함수의 버전은 기존의 절차의 끝 부분에 한 단계를 추가하기 위한 것이므로, 함수 첫 줄에 Super::BeginPlay()를 호출한다.

 

그리고 여기서는 UUserWidget을 사용하기 위해서, HowTo_UMGGameModeBase.cpp 상단에 "Blueprint/UserWidget.h"를 포함시켜 주어야 한다.

 

#include "Blueprint/UserWidget.h"

 

계속 해서, 메뉴 간의 전환 방식을 구현해야 한다. 뷰포트에 활성화된 유저 위젯이 있다면 제거하고 난 다음에 유저 위젯을 새로 만들어 뷰포트에 추가해주도록 구현한다.

 

void AHowTo_UMGGameModeBase::ChangeMenuWidget(TSubclassOf NewWidgetClass)
{
    if (CurrentWidget != nullptr)
    {
        CurrentWidget->RemoveFromViewport();
        CurrentWidget = nullptr;
    }

    if (NewWidgetClass != nullptr)
    {
        CurrentWidget = CreateWidget(GetWorld(), NewWidgetClass);
        if (CurrentWidget != nullptr)
        {
            CurrentWidget->AddToViewport();
        }
    }
}

 

함수 구현할 때도, 변경된 선언에 맞춰서 매개변수 타입을 아래와 같이 수정하자.

 

void AHowTo_UMGGameModeBase::ChangeMenuWidget(TSubclassOf<UUserWidget> NewWidgetClass)

 

이 코드는 제공된 위젯 인스턴스를 만들어 화면에 넣는다. 언리얼 엔진은 한 번에 다수의 위젯을 표시하고 상호작용처리가 가능하며, 한 번에 하나만 활성화 되도록 제거를 할 수도 있다. 하지만 위젯을 직접 소멸시킬 필요는 없는데, 뷰포트에서의 제거 밑 레퍼런싱하는 모든 변수 소거(또는 변경) 작업은 언리얼 엔진의 가비지 컬렉션 시스템에서 해주기 때문이다.

 

마지막으로 Player Controller 클래스에 입력 모드를 설정해야 한다. 그러기 위해서 Player Controller를 기반으로 새로운 C++ 클래스를 추가하자. 이 클래스 안해서 게임이 시작될 때 함수 하나를 추가로 호출해주기만 하면 UI 요소와 상호작용이 가능하도록 할 수 있다.

 

 

 

HowTo_UMGPlayerController.h에서 클래스에 다음 오버라이드를 추가하고 .cpp에 구현한다.

 

public:
    virtual void BeginPlay() override;

 

void AHowTo_UMGPlayerController::BeginPlay()
{
    Super::BeginPlay();
    SetInputMode(FInputModeGameAndUI());
}

 

메뉴 생성 및 표시와 필요없어진 메뉴를 제거하기 위한 코드 프레임워크를 완성했다. 이제 언리얼 에디터로 돌아가 메뉴 에셋을 디자인 해보자.

 

 

 

 

 

3. 메뉴 위젯 블루프린트 생성(문서)

 

언리얼 에디터에서 컴파일 버튼을 누르면 수정된 코드가 빌드된다. 이를 통해서 유저 위젯을 메뉴로 사용할수 있게 된다.

 

 

이제 게임 모드가 메뉴로 사용할 유저 위젯을 생성해보자. 콘텐츠 브라우저의 "신규 추가" 버튼을 누르고 유저 인터페이스 카테고리에서 위젯 블루프린트(Widget Blueprint) 클래스를 선택해서, "MainMenu"와 "NewGameMenu"라는 이름으로 두 개의 유저 위젯을 만든다.

 

 

방금 만든 "MainMenu" 위젯을 더블클릭하면 블루프린트 디자이너 창이 열리며, 여기서 메뉴 레이아웃을 만들 수 있다.

 

팔레트 패널의 일반 섹션에서 버튼(Button)과 텍스트(Text)를 끌어 그래프에 배치한다. 이 버튼은 새 게임 메뉴를 여는데 사용될 것이다.

 

 

버튼의 위치와 크기를 다음과 같이 수정하고, 함수성 연결을 해줄 때 알아보기 쉽게 하기 위해서 이름을 "NewGameButton"으로 변경한다.

 

 

그리고 이 버튼이 무슨 버튼인지 보여주기 위해서 텍스트 블록(Text Block)을 버튼 위로 끌어다 놓고 디테일을 다음과 같이 수정한다.

 

- Text를 "New Game"으로 변경

 

- Visibility를 Hit Test Visibility로 변경한다. 그러면 버튼을 누르려는 클릭을 텍스트 블록이 막지 않는다.

 

- 이름을 "NewGameText"로 변경한다. 필수는 아니지만 나중에 계층구조에서 어떤 UI인지 찾기 쉬워지기 때문에 들여두면 좋은 습관이 된다.

 

 

 

두 번째 버튼과 텍스트 블록을 만들어서 "Quit"(종료) 기능을 만든다. 버튼 이름은 "QuitButton", 버튼 위치는 (600, 100), 텍스트 블록 이름은 "QuitText"로 설정한다.

 

그 다음은, 버튼을 클릭했을 때, 코드가 실행되도록 버튼에 이벤트를 추가하는 작업을 해야한다. 디테일 패널에서 적합한 이벤트의 이름 옆에 "+"버튼을 찾아서 누르면 되는데 이 경우에는 "OnClicked" 이벤트를 추가하면 된다.

 

 

NewGameButton의 OnClicked 이벤트를 다음과 같이 구성한다.

 

 

QuitButton의 OnClicked 이벤트를 다음과 같이 구성한다.

 

 

 

메인 메뉴를 만들었으니, 레벨이 시작되면 메인 메뉴를 로드하는 게임 모드 애셋을 구성하면 된다.

 

 

4. 게임 모드 환경설정(문서)

 

콘텐츠 브라우저에서 프로젝트의 게임 모드에 맞는 블루프린트 클래스를 두 개 추가할 것이다. 그러면 그 두 클래스에 노출된 변수를 원하는 값으로 설정하는 것이 가능하다.

 

콘텐츠 브라우저에서 신규 추가버튼에서 블루프린트 클래스를 클릭한다.

 

 

부모 클래스로 HowTo_UMGGameModeBase를 선택해서 "MenuGameMode" 블루프린트 클래스를 만든다.

 

 

그리고 게임 내에서 마우스 커서를 보이게 하기 위해서, 플레이어 컨트롤러의 블루프린트 클래스도 만들어 주어야 한다. 콘텐츠 브라우저에서 블루프린트 클래스를 클릭하고 Player Controller 클래스 상속받아서 "MenuPlayerController"라는 이름으로 클래스를 생성하자.

 

"MenuPlayerController" 클래스가 생성되었으면, 콘텐츠 브라우저에서 블루프린트 파일을 더블클릭해서 블루프린트 에디터를 연다. 그리고 디테일 창에서 "Show Mouse Cursor" 박스를 체크한다.

 

 

다음은 "MenuGameMode"를 편집한다.

 

Starting Widget Class를 "MainMenu" 애셋으로 설정해서 게임 시작시 메뉴가 뜨도록 만든다.

 

Default Pawn Class를 Default Pawn이 아닌 Pawn으로 설정해서 플레이어가 메뉴에 있을 때, 이리저리 날아다니지 않도록 만든다.

 

Player Controller Class를 방금 만든 "MenuPlayerController" 애셋으로 설정해서 메인 메뉴에서 마우스 커서가 표시되도록 만든다.

 

 

우리가 만든 게임 모드 블루프린트를 사용하려면, 레벨 에디터 창으로 돌아와 세팅 버튼을 통해 현재 레벨에 대한 월드 세팅을 변경해야 한다.

 

 

프로젝트 세팅 메뉴의 맵 & 모드에서도 기본 게임 모드 설정이 가능하다. 이 방법을 사용하면 따로 덮어쓰지 않는 한 모든 레벨에서 기본 게임 모드로 설정된다. 어느 방법을 사용할지는 프로젝트 구성에 따라 달라질 수 있다.

 

월드 세팅 패널에서 Game Mode Override 항목을 "MenuGameMode" 애셋으로 설정한다.

 

 

이제 레벨에 메인 메뉴를 로드하고, 마우스 커서를 표시하는 플레이어 컨트롤러를 사용하도록 환경설정된 커스텀 게임 모드 애셋이 적용되었다. 이제 게임을 실행하면 Quit 버튼은 정상적으로 작동하지만, 아직 New Game 버튼은 빈 메뉴 화면으로 이동한다. 다음 단계에서는 New Game Menu를 구성해주자.

 

 

 

 

 

5. 2차 메뉴 제작(문서)

 

콘텐츠 브라우저에서 아까 만든 "NewGameMenu" 애셋을 연다. 이 메뉴는 이름을 입력할 수 있는 텍스트 박스와, 이름을 입력하기 전에는 누를 수 없는 '게임 플레이' 버튼, 메인 메뉴로 돌아가는 버튼으로 구성된다.

 

이름 입력 박스를 만들기 위해, 레이아웃에 Text Box(텍스트 박스)를 배치한다.

 

 

텍스트 박스의 설정은 다음과 같다.

 

 

이전 메뉴에서 버튼을 만들었던 것과 같은 방식으로 텍스트 블록 라벨이 있는 게임 플레이 버튼을 만든다.

 

버튼 : 이름은 PlayGameButton, 위치는 200, 300, 크기는 200, 100으로 변경한다.

 

텍스트 블록 : 이름은 PlayGameText, Visibility는 Hit Test Visible로, 내용은 Play Game으로 변경한 다음 PlayGameButton위에 배치한다.

 

게임 플레이 버튼의 경우, 만약 플레이어 이름 입력란이 비어있다면 작동하지 않도록 특수한 기능을 추가한다. UMG의 바인드 기능을 사용하여 (Behavior섹션 아래) "Is Enabled" 칸에 새로운 함수를 만들면 된다.

 

 

텍스트 박스가 공백이 아니어서 버튼이 활성화 될 수 있는 상태인지 확인하려면, 텍스트 박스에서의 텍스트를 스트링으로 변환한 다음 길이가 0보다 큰지 검사하면 된다.

 

 

이제 메인 메뉴로 돌아갈 수 있도록 버튼을 하나 추가해보자. 메인 메뉴에서 게임 플레이 버튼과 비슷하지만, 위치 기준이 좌상단이 아닌 우하단 구석이 될 것이다. 그러기 위해서는 디테일 패널에서 "앵커" 드롭다운을 클릭한 다음, 팝업 메뉴에서 우하단 부분을 나타내는 모양을 선택한다.

 

버튼 이름을 MainMenuButton으로 설정한다.

 

위치를 -400, -200으로 설정한다.

 

크기를 200x100으로 설정한다.

 

 

이제 NewGameMenu 위젯의 버튼들에도 OnClicked 이벤트들을 추가하자

 

 

메인 메뉴 버튼의 경우, 다시 메인 메뉴 위젯을 열어주지만, 게임 플레이 버튼은 누르면 메뉴를 비활성시킨 후, 게임에서 더 이상 아무것도 할 수 없게 만든다. 보통 이 시점에서 첫 레벨을 로드하고, 오프닝 동영상을 재상하거나 폰을 스폰시켜 빙의하는 등의 처리를 하게 된다.

 

모든 작업을 마치고 플레이 해보면 다음 스크린샷과 같은 장면을 얻을 수 있다.

 

 

 

 


 

이번 섹션에서 배운 것

 

1. 언리얼 모듈 종속성

언리얼 엔진의 기능은 다수의 모듈로 나누어져 있고, 그 중에 필요한 모듈을 묶어서 사용하는 방식이다. 이번 섹션 처음 부분에 build.cs파일에서 모듈 종속성을 구성할 때도 보았겠지만, 기본적으로 언리얼은 Core, CoreUObject, Engine, InputCore 모듈을 사용하고 있었고, UI와 관련된 기능을 사용하기 위해서 UMG 모듈과 Slate, SlateCore 모듈을 구성에 추가해주었다.

 

추후의 일이지만, 언리얼 엔진을 커스터마이징하고자 할 때, 새롭게 추가하는 기능을 이러한 모듈로 만들어 덧붙이게 될 것이다.

 

2. TSubClassOf<T>

UClass 타입 안정성을 보장하는 템플릿 클래스. TSubClassOf에 전달된 인수가 템플릿 인자로 받은 타입과 일치하거나 템플릿 인자로 받은 타입을 상속받은 타입인지를 런타임 중에 확인하도록 도와주는 클래스이다.

 
3. UUserWidget
UUserWidget* UserWidget;

Widget Blueprint를 통해서 확장할 수 있는 사용자 위젯.

UserWidget->AddToViewport();

유저 위젯을 뷰 포트에 추가하는 함수.

UserWidget->RemoveToViewport();

유저 위젯을 뷰 포트에서 제거하는 함수.

 

4. AActor::GetWorld()

GetWorld();

UWorld 객체를 가져오는 함수. UWorld는 액터나 컴포넌트들을 포함하는 맵이나 샌드박스의 최상위 객체이다.

 

5. CreateWidget()

CreateWidget(GetWorld(), newWidget);

위젯을 생성하는 함수

 

6. APlayerController::SetInputMode()

SetInputMode(FInputModeGameAndUI());

플레이어 컨트롤러의 입력 모드를 설정하는 함수. Game 입력만 받을지, UI 입력만 받을지, 아니면 둘 다 받을지를 정할 수 있다.

 

7. UPROPERTY()

UPROPERTY(EditAnywhere, BlueprintReadOnly, Category = "UMG_Game")

클래스의 멤버 변수에 붙이는 매크로. 에디터의 노출 수준을 정할 수 있다.

 

EditAnywhere는 에디터 디테일 패널에 노출이 가능하다.

 

BlueprintReadOnly는 블루프린트에서 수정을 불가능하고 읽기만 가능하다.

 

Category는 블루프린트에서 불러올 때, 카테고리를 분류해서 찾기 쉽게 만들어준다.

 

8. UFUNCTION()

UFUNCTION(BlueprintCallable, Category = "UMG_Game")

함수에 붙이는 매크로.

 

BlueprintCallable은 블루프린트에서 호출만 가능하다는 의미이다.

 

[유니티 어필리에이트 프로그램]

아래의 링크를 통해 에셋을 구매하시거나 유니티를 구독하시면 수익의 일부가 베르에게 수수료로 지급되어 채널의 운영에 도움이 됩니다.

 

에셋스토어

여러분의 작업에 필요한 베스트 에셋을 찾아보세요. 유니티 에셋스토어가 2D, 3D 모델, SDK, 템플릿, 툴 등 여러분의 콘텐츠 제작에 날개를 달아줄 다양한 에셋을 제공합니다.

assetstore.unity.com

 

Easy 2D, 3D, VR, & AR software for cross-platform development of games and mobile apps. - Unity Store

Have a 2D, 3D, VR, or AR project that needs cross-platform functionality? We can help. Take a look at the easy-to-use Unity Plus real-time dev platform!

store.unity.com

 

Create 2D & 3D Experiences With Unity's Game Engine | Unity Pro - Unity Store

Unity Pro software is a real-time 3D platform for teams who want to design cross-platform, 2D, 3D, VR, AR & mobile experiences with a full suite of advanced tools.

store.unity.com

[투네이션]

 

-

 

toon.at

[Patreon]

 

WER's GAME DEVELOP CHANNEL님이 Game making class videos 창작 중 | Patreon

WER's GAME DEVELOP CHANNEL의 후원자가 되어보세요. 아티스트와 크리에이터를 위한 세계 최대의 멤버십 플랫폼에서 멤버십 전용 콘텐츠와 체험을 즐길 수 있습니다.

www.patreon.com

[디스코드 채널]

 

Join the 베르의 게임 개발 채널 Discord Server!

Check out the 베르의 게임 개발 채널 community on Discord - hang out with 399 other members and enjoy free voice and text chat.

discord.com

 

반응형

+ Recent posts