이번 포스트에서는 유니티의 레이어로 Collider의 충돌 범위를 설정하는 방법을 알아보도록 하자.
두 개의 Collider가 충돌하면 OnCollision 혹은 OnTrigger 이벤트가 발생하며 개발자는 이 이벤트를 통해서 충돌을 감지했을 때 처리되어야 할 기능을 구현한다는 것을 기억할 것이다.
과연 게임에서는 어떤 상황과 이유에서 Collider의 충돌 범위를 설정해서 특정한 충돌을 받아들이거나 무시해야 할까?
만약 두 캐릭터가 서로를 향해서 총알을 발사한다고 생각해보자. 그런데 서로에게 발사한 총알끼리의 충돌을 무시하지 않고 그대로 두면 어떻게 될까? 총알끼리 충돌하면 서로에게 발사된 총알이 없어져 버리거나 튕겨져 나갈 것이다.
와! 총알을 쏴서 상대방의 총알을 막을 수 있는 게임이라니! 잘 만들면 꽤나 재밌고 멋있을 것 같은 컨셉이다.
하지만 대부분의 게임에서는 총알끼리의 충돌같은 건 구현하지 않고 무시하게 만들어버린다.
그 이유는 여러 가지가 있을 수 있는데 수많은 총알이 발생시키는 충돌로 게임의 성능이 저하될 수 있다는 것과 이런 총알로 총알을 맞출 수 있는 컨트롤 중심적인 시스템에서는 팬티만 입고 권총을 든 무시무시하고 고일 대로 고여버린 고인물이 달려와서 초보자가 쏜 총알을 모조리 막아버리고 초보자의 뚝배기를 터뜨려 버릴 수 있다는 것이다.
총알과 총알이 부딪히는 것 외에도 많은 문제가 있다.
어떠한 예외가 있을 수 있는지 살펴보자면 열심히 체력을 깎아놓은 몬스터가 힐팩에 스쳐서 건강해진다던가 플레이어는 던전 입구에서 헤매고 있는데 다른 층으로 넘어가는 콜라이더 앞에서 서성거리던 몬스터가 그 트리거를 건드려서 플레이어가 다음 층으로 넘아가던가 하는 많은 문제가 발생할 수 있다.
이걸 코드 레벨에서 막으려면 총알 클래스에는 충돌 검사를 할 때 충돌한 대상이 같은 총알이면 무시하는 코드를, 힐팩 클래스과 던전 층 이동용 트리거 클래스에서는 트리거에 닿은게 플레이어가 아니면 무시하는 코드를 작성해야 할 것이다. 이렇게 수동으로 일일이 예외를 막아야하는 경우가 많으면 많을수록 앞에서 언급한 것과 같은 어처구니가 없게 느껴지는 버그가 발생할 확률이 상승한다.
만약 이걸 별도의 코드 작업 없이 간단하고 일괄적으로 막을 수 있다면 당연히 그 방법을 써야될 것이다.
그게 바로 이번에 배울 유니티 레이어를 이용한 Collider 충돌 무시하기이다.
본격적인 내용에 들어가기에 앞서 아래에 있는 unity-mouse-input-practice.zip 파일을 다운로드 받아서 패키지를 임포트하도록 한다.
그리고 패키지에 포함되어 있는 Simple Character Test 씬을 열도록 한다.
먼저 게임를 플레이시키고 게임 뷰에 클릭해보면 클릭을 한 번 할 때마다 총알이 한 발씩 나가는 것을 볼 수 있다.
그 다음에는 Bullet을 찾아서 스크립트 에디터를 열어보면 아래 쪽에 있는 트리거 감지 이벤트인 OnTriggerEnter에 앞에서 말한 것처럼 충돌 감지 예외를 코드 레벨에서 수동으로 처리하고 있는 것이 보일 것이다. 같은 총알끼리 부딪혔을 때는 무시하도록 작성되어 있다.
게임을 플레이시키고 마우스를 클릭해보면 발사된 총알끼리 부딪혀서 앞으로 나가지 못하고 바로 사라져버리는 걸 볼 수 있다.
그럼 이걸 어떻게 코드 레벨의 예외처리 없이 원래대로 동작하게 만들 수 있을까?
이제부터 그걸 알아보자.
프로젝트 뷰에서 Prefabs 폴더 안에 있는 Bullet 프리팹을 더블클릭해서 프리팹 수정 씬을 열어보자. 그럼 선택된 Bullet 프리팹 게임 오브젝트의 내용을 인스펙터 뷰에서 볼 수 있는데 게임 오브젝트의 이름 아래를 보면 태그와 함께 Default라고 표시된 레이어를 찾을 수 있다.
레이어를 클릭해보면 Default, TrasparentFX, Ignor Raycast, Water, UI가 있다.
이 레이어에는 여러가지 역할이 있지만 대표적인 것이 바로 지금 배우고 있는 충돌 무시 설정이다.
항목들 중에서 제일 아래에 있는 [Add Layer]를 선택하면 레이어를 직접 만들 수 있다.
캐릭터가 총알이나 화살에 맞기도 하고, 달리던 자동차가 건물에 부딪히기도 하며 약간은 다른 개념으로 보안용 레이저에 도둑인 캐릭터가 감지되어 경보가 울리기도 한다.
이런 오브젝트의 충돌들을 처리하기 위해서는 물리적인 충돌을 처리하는 방법을 알아야 한다.
Collider 컴포넌트
유니티 엔진에서 Collider라는 컴포넌트를 이용해서 충돌을 체크한다.
유니티 엔진에서 가장 대표적으로 사용되는 콜라이더로는 Box Collider, Sphere Collider, Capsule Collider가 있다.
씬 뷰에서 Collider 컴포넌트가 붙어있는 게임 오브젝트를 선택해보면 위의 이미지와 같은 초록색 선으로 표시되는 영역이 보이는데, 이것은 Collider 컴포넌트가 충돌을 감지하는 영역의 크기를 보여준다.
Collider 컴포넌트의 프로퍼티
이번에는 각 Collider 컴포넌트의 프로퍼티들을 살펴보자.
우선 Collider 컴포넌트들은 공통적으로 Is Trigger 프로퍼티와 Material 프로퍼티, Center 프로퍼티를 가지고 있다. 하지만 이 중에서 Is Trigger와 Material 프로퍼티는 좀 더 뒤에서 설명하도록 하고 먼저 Center 프로퍼티부터 하나씩 살펴보자.
Center 프로퍼티와 그 아래에 있는 프로퍼티들은 콜라이더 영역의 위치와 크기를 조절하는데 쓰인다.
Center
먼저 Center 프로퍼티는 게임 오브젝트의 중심으로부터 어느 위치에 콜라이더의 중심을 둘 것인가를 설정한다. 위 이미지처럼 Y 값을 바꾸면 게임 오브젝트의 중심보다 위쪽에 약간 위쪽에 콜라이더 영역이 표시된다. 단 이때의 좌표 기준을 게임 오브젝트의 로컬 좌표를 기준으로 동작한다.
Box Collider의 프로퍼티
Center 아래의 프로퍼티들은 콜라이더의 종류마다 조금씩 다르니 하나씩 설명해보도록 하겠다.
Size
Box Collider의 Size 프로퍼티는 콜라이더 영역의 크기를 정하는데 쓰인다. Vector3 타입이며 xyz 각 값은 게임 오브젝트의 로컬 좌표계의 축에 일치하게 동작하며, 이 사이즈의 1 단위는 1 유니티 미터를 의미한다.
Sphere Collier의 프로퍼티
Radius
Sphere Collider의 Radius 프로퍼티 역시 콜라이더 영역의 크기를 정하는데 쓰이는데, 이 값은 구체의 반지름으로 동작한다. Radius를 1로 정하면 콜라이더 영역의 지름은 2유니티 미터가 된다.
Capsule Collider
Radius
Capsule Collider의 Radius 값은 콜라이더 영역의 두께를 정하는데 쓰인다. 참고로 이 값이 Height 값보다 커지면, 콜라이더의 영역이 Sphere Collider처럼 그냥 구체 모양이 되버린다.
Height
Height 값은 Capsule Collider의 길이를 정하는데 쓰인다.
Direction
Direction 프로퍼티는 Capsule Collider의 Height를 변경했을때 길어지는 방향을 정하는 프로퍼티다. 값으로는 X-Axis, Y-Axis, Z-Axis가 있는데, 단어 그대로 로컬 좌표계의 각 축의 방향을 따른다.
참고로 사람이 서있을 때의 모양이 위 아래로 길쭉한 모양이 일반적이기 때문에 사람 형태의 캐릭터에 콜라이더를 부착할 때는 Capsule Collider를 주로 사용한다. 그리고 뚱뚱한 캐릭터면 Radius 값을 늘려서 Capsule Collider의 두께를 두껍게하고, 키가 큰 캐릭터면 Height 값을 키워서 길이를 늘리는 방식으로 사용된다.
Is Trigger
그럼 이제 잠시 뒤로 미뤄두었던 Is Trigger 옵션을 보자. 이 옵션은 콜라이더가 트리거(Trigger)로 동작할지, 콜리전(Collision)으로 동작할지를 정하는 프로퍼티이다.
콜리전은 벽이나 바닥처럼 다른 물체를 통과하지 못하게 가로막는 장애물을 뜻하고, 트리거는 마트의 도난 방지 장치처럼 물체를 통과시키되 지나가는 물체를 감지하는 것을 의미한다.
Sphere 게임 오브젝트를 Cube 게임 오브젝트 위로 떨어지게 만든 뒤 Cube 게임 오브젝트가 가진 Box Collider의 Is Trigger 옵션을 켜둔 상태와 꺼둔 상태로 각각 플레이를 해보면 Is Trigger가 꺼져있을 때는 Sphere가 Cube위에 멈추고, 켜져있을 때는 Cube를 통과해버리는 것을 볼 수 있다.
참고로, 이렇게 게임 오브젝트가 중력과 같은 물리효과를 받게 하기 위해서는 Rigidbody 컴포넌트를 붙여줘야 한다.
Material
Material 프로퍼티는 콜라이더가 충돌할 때, 어떤 재료의 물리적인 특성을 보여줄 지를 설정할 수 있는 프로퍼티이다. 이런 종류의 머티리얼을 Physics Material이라고 하는데, 프로젝트 뷰에 우클릭하고 [Create > Physics Material]을 선택해서 생성할 수 있다.
오브젝트가 고무공처럼 튀는 것을 구현하기 위해 생성한 피직스 머티리얼에 여러가지 옵션이 있지만, 지금은 간단하게 Bounciness 옵션을 0.8로 변경하고 Bounce Combine을 "Maximum"으로 설정한다.
Sphere 게임 오브젝트의 Sphere Collider에 넣고 플레이 버튼을 눌러보면 아까 전에는 Cube 위에 얌전히 멈췄던 Sphere가 마치 고무공처럼 튀어오르는 것을 볼 수 있다.
Collider 충돌 감지하는 스크립트 작성하기
이제 이 충돌을 스크립트에서 감지하는 방법을 알아보자.
유니티 엔진에서는 콜라이더끼리 충돌했을 때, 특정한 함수를 호출해준다. 그런데 앞에서 Is Trigger 프로퍼티에 대해서 설명할 때, 이 옵션의 상태에 따라서 트리거와 콜리전으로 나뉜다고 이야기했던 것을 기억할 것이다.
유니티 엔진은 이 트리거와 콜리전이 충돌하는 경우를 다르게 취급하고 다른 함수를 호출해준다.
OnCollision 이벤트
public class ColliTest : MonoBehaviour
{
// Collider 컴포넌트의 is Trigger가 false인 상태로 충돌을 시작했을 때
이런 식으로 각각의 콜라이더가 따로 충돌을 감지하는 것이 아니라 두 콜라이더가 하나로 취급되어 충돌을 감지하고자 할 때, 컴포지트 콜라이더 2D를 사용하게 된다.
컴포지트 콜라이더 2D 컴포넌트를 사용하는 방법은 위와 같이 통합하고자하는 콜라이더들의 상위에 컴포지트 콜라이더를 추가해주고,
[그림 7]과 같이 하위에 속하는 콜라이더 컴포넌트들의 Used By Composite 프로퍼티를 true로 설정해주면 된다.
그렇게 하면 상위 오브젝트를 선택했을때, [그림 8]과 같이 하위의 콜라이더들이 하나로 통합되어서 보이는 것을 볼 수 있다.
로그에서도 상위 오브젝트에서의 충돌 체크만 발생하는 것을 알 수 있다.
리지드바디 2D(Rigidbody 2D)
컴포지트 콜라이더 2D 컴포넌트를 게임 오브젝트에 부착하면 자동으로 리지드바디 2D 컴포넌트 역시 게임 오브젝트에 부착된다. 때문에 지형지물의 요소에 컴포지트 콜라이더 2D를 사용할 때는 이 리지드바디 2D 컴포넌트의 옵션에 신경써야 한다.
옵션에 신경쓰지 않을 경우, [그림 11]처럼 캐릭터가 지형에 닿자마자 지형이 떨어지거나, 게임이 시작하자마자 지형이 추락해서 지형이 사라지는 모습을 보게 될 수도 있다.
이렇게 컴포지트 콜라이더 2D 컴포넌트를 적용한 게임 오브젝트를 고정된 지형요소로 사용하고자 한다면 리지드바디2D의 바디타입을 Static으로 설정해야한다.
생성 타입(Generation Type)
컴포지트 콜라이더 2D 컴포넌트에는 생성 타입이라는 프로퍼티가 존재하는데 Synchronous와 Manual 옵션이 존재한다.
Synchronous는 [그림 15]처럼 하위 콜라이더들이 변동되는 때마다 바로 통합된 콜라이더를 새로 만드는 옵션이고,
Manual은 컴포지트 콜라이더 2D 컴포넌트가 처음 부착되는 시점 호은 콜라이더 재생성(Regenerate Collider) 버튼을 누른 시점에만 콜라이더를 만드는 옵션이다.
[그림 17]과 같이 아래에 있는 노란 원이 애니메이션에 의해서 위치가 바뀌어도 콜라이더는 따라서 움직이지 않기 때문에 빈 공간에 충돌하는 것을 알 수 있다.
위의 설명에서 알 수 있듯이 Synchronous 옵션은 통합된 콜라이더가 변경되는 애니메이션에 따라서 지속적으로 업데이트가 되어야하는 경우에 사용하고, 반대로 Manual은 통합된 콜라이더가 일반 지형과 같이 변경되는 경우가 없는 경우에 사용된다.
지오메트리 타입(Geometry Type)
그 다음 중요한 옵션은 지오메트리 타입이다. 이 프로퍼티는 콜라이더를 생성할 때 어떤 형태로 생성할 것인가를 결정한다. 옵션 값은 Outlines와 Polygons가 있다.
Outlines로 콜라이더를 생성하면 [그림 19]와 같이 내부에 아무선 선이 없이 생성되고, Polygons로 콜라이더를 생성하면 [그림 20]과 같이 내부에 선이 그어져서 나온다. 이 차이가 의미하는 것은 Outlines 옵션의 경우에는 콜라이더가 외부에 선만 그어져 있고 속은 비어있다는 뜻이고, Polygons 옵션은 내부가 꽉 차있다는 뜻이다.
콜라이더의 내부를 굳이 채울 필요가 있냐고 생각할 수도 있지만, 이것은 확실히 필요한 개념이다. 게임 내에서의 발생하는 충돌 감지나 레이캐스트는 주로 옆에서 날아오기 때문에 Outlines 옵션 만으로도 충분하지만 화면 밖에서 들어오는 터치나 사용자의 클릭 같은 이벤트는 개념적으로 위에서 들어오기 때문에 콜라이더의 내부가 차있는 것이 좋다.
public class Picker : MonoBehaviour
{
private void Update()
{
if (Input.GetMouseButtonDown(0))
{
var hitResult2D = Physics2D.Raycast(Camera.main.ScreenToWorldPoint(Input.mousePosition), transform.up, 0.1f);
Debug.Log("2D Raycast Result :: " + hitResult2D.collider.name);
}
}
}
위와 같이 마우스를 클릭한 지점에서 레이캐스트를 발사해서 콜라이더를 검출하는 코드를 작성해서 Outlines 옵션으로 만들어진 컴포지트 콜라이더와 Polygons 옵션으로 만들어진 컴포지트 콜라이더를 클릭하는 테스트를 진행해보면 그 차이를 명확하게 인지할 수 있다.
[유니티 어필리에이트 프로그램]
아래의 링크를 통해 에셋을 구매하시거나 유니티를 구독하시면 수익의 일부가 베르에게 수수료로 지급되어 채널의 운영에 도움이 됩니다.
위의 코드는 틱이 작동하는 동안 bSeeingThrough의 상태에 따라서 다이내믹 머티리얼 인스턴스의 머티리얼 파라미터 "Opacity"를 0에서 1로 만들거나 1에서 0으로 만들고 작동이 끝나면 Tick() 함수의 작동을 멈추게 한다. 참고로 머티리얼 파라미터 "Opacity"는 이후 작업에서 추가한다.
SetShowSeeingThrough() 함수는 bShow 변수를 받아서 액터가 투명해지기 시작하는지 불투명해지기 시작하는지 결정한 뒤 Tick() 함수를 작동시킨다.
코드 작업이 끝났다면 솔루션 탐색기에서 프로젝트를 빌드한 뒤, 에디터로 돌아간다.
투명해지는 만들기
이번에는 SeeingThroughActor가 사용할 머티리얼을 만들 차례이다. Props 폴더 안에 Materials 폴더를 만든 다음, 콘텐츠 브라우저 패널의 파일 창에 우클릭해서 머티리얼을 선택한다. 그리고 생성된 머티리얼의 이름을 M_SeeingThrough로 한다.
머티리얼을 더블클릭해서 머티리얼 에디터를 열고 디테일 패널에서 Material 카테고리의 Blend Mode를 Translucent로 설정한다.
그리고 TextureSamleParameter2D와 ScalarParameter를 추가하고 각각 이름을 Texture와 Opacity로 한다.
그리고 Opacity 파라미터 노드를 선택한 뒤, 디테일 패널에서 Default Value를 1로 설정한다.
그 다음, 적용과 저장을 하고 머티리얼 에디터를 닫는다.
언리얼 에디터로 돌아와서, 콘텐츠 브라우저 패널에서 방금 만든 머티리얼을 우클릭하고 머티리얼 인스턴스 생성을 선택한다.
머티리얼 인스턴스가 만들어지면 더블클릭해서 머티리얼 인스턴스 에디터를 열고 디테일 패널에서 Opacity를 체크해주고 머티리얼 인스턴스를 저장한 뒤, 머티리얼 인스턴스 에디터를 닫는다.
SeeingThroughActor 배치
이제 SeeingThroughActor를 배치할 차례이다. 콘텐츠 브라우저 패널에서 SeeingTroughActor를 찾아서 벽 토대 위에 배치한다.
콜리전(Collision)은 언리얼 엔진에서 물리적인 충돌이나 레이 캐스팅 실시간 처리를 해준다. 이러한 물리 시뮬레이션은 Collision Response(콜리전 반응) 및 Trace Response(트레이스 반응) 설정을 통해서 다른 오브젝트 유형과 어떻게 상호작용할지 정의된다.
블록(Block), 겹침(Overlap), 무시(Ignore)
충돌 작용은 블록(Block), 겹침(Overlap), 무시(Ignore)로 나누어진다.
블록은 충돌하는 두 오브젝트가 모두 블록이어야 두 오브젝트가 충돌했을 때, 겹치지 않고 서로에게 막히게 된다. 콜리전 옵션 중에 Simulation Generates Hit Event 프로퍼티를 true로 설정하면 이러한 충돌이 발생했을 때 Event Hit을 받아서 블루프린트나 디스트럭터블 액터, 트리거 등에 사용할 수 있고 이를 응용해서 총알에 맞아서 깨지는 유리창 등을 구현할 수 있다.
겹침은 다른 오브젝트를 통과시키지만, 만약 Generate Overlap Event가 활성화된 상태라면 Overlap Event를 발생시킨다. 이 겹침 이벤트가 발생하려면 두 오브젝트 모두 겹침 이상으로 설정되어 있어야 한다. 만약 한 쪽은 겹침이고 다른 한 쪽이 무시인 상태라면 겹침 이벤트는 발생하지 않는다.
무시는 모든 오브젝트와 트레이스를 통과시키며 어떠한 이벤트도 발생시키지 않는다.
콜리전 이벤트
콜리전이 발생시키는 이벤트를 다루는 방법에 대해서 배워보자.
히트 이벤트(Hit Event)
히트 이벤트는 블록 상태인 오브젝트들이 서로 충돌했을 때 발생하는 이벤트로 해당 오브젝트에게 통지된다. 히트 이벤트를 발생하게 하기 위해서는 우선 콜리전의 프로퍼티 중에 Simulation Generates Hit Event를 true로 설정해줘야 한다.
우선 히트 이벤트를 받아서 처리하기 위한 클래스를 BlockCollisionActor라는 이름으로 Actor 클래스를 상속받아서 생성하자.
그리고 비주얼 스튜디오로 가서 BlockCollisionActor.h에 다음 멤버 변수와 함수 선언 코드를 추가한다.
NotifyActorBeginOverlap() 함수는 겹침이 시작되었을 때 실행되는 함수이고 NotifyActorEndOverlap() 함수는 겹침이 끝났을 때 실행되는 함수이다. 이 두함수를 통해서 우리는 언제 겹침이 시작되었는지, 언제 겹침이 끝났는지를 알 수 있다.
BoxMesh는 사실 큰 필요는 없지만 구체가 통과해서 지나갔음을 보여주기 위해서 추가한다. 하지만 만약 스태틱 메시를 사용하지 않을 것이라면 BoxComponent나 SphereComponent, CapsuleComponent 같은 콜리전 컴포넌트를 사용해야 한다.
그 다음엔 OverlapCollisionActor.cpp로 가서 스태틱 메시 컴포넌트를 사용하기 위해 다음 전처리기를 추가한다.
제대로 따라가기 (8) C++ 프로그래밍 튜토리얼 :: 일인칭 슈팅 C++ 튜토리얼 (3)
작성버전 :: 4.21.0
언리얼 엔진 튜토리얼인 일인칭 슈팅 C++ 튜토리얼에서는 C++ 코드 작업을 통해서 기본적인 일인칭 슈팅(FPS) 게임을 만드는 법을 배울 수 있다.
이번 튜토리얼은 각 하위 섹션들의 길이가 길어서 분할되어 작성된다.
튜토리얼대로 하면 문제가 발생해서 제대로 따라갈 수 없는 부분으로 동작이 가능하게 수정해야하는 부분은 빨간 블럭으로 표시되어 있다.
이번 튜토리얼에서 새로 배우게 되는 내용은 글 제일 끝에 "이번 섹션에서 배운 것"에 정리된다.
수정
지난 섹션에서 VisibleDefaultOnly는 버전이 바뀌어서 사라진 지정자라고 했던 부분은 잘못된 부분입니다.
VisibleDefaultsOnly는 정상적으로 존재하는 UPROPERTY 지정자입니다. 제가 실수로 VisibleDefaultOnly로 오타를 내서 컴파일러가 지정자가 없다고 에러를 띄웠었습니다. 잘못된 정보로 혼동을 드린 점에 대해서 사과드립니다. 다음부터는 제대로된 확인을 거친 후, 글을 올리도록 하겠습니다.
이전 섹션에서 캐릭터 구성을 마쳤으니, 이제 발사체 무기를 구현하여 발사하면 단순한 수류탄 같은 발사체가 화면 중앙에서 발사되어 월드에 충돌할 때까지 날아가도록 만들어보자. 이번 단계에서는 발사체(Projectile)에 쓸 입력을 추가하고 새 코드 클래스를 만들 것이다.
발사 액션 매핑 추가
편집 메뉴에서 프로젝트 세팅 창을 연다. 그리고 엔진 섹션에서 입력을 선택한 뒤, 액션 매핑에 아래와 같이 "Fire" 라는 입력 세팅을 추가 한다.
발사체(Projectile) 클래스 추가
파일 메뉴에서 새로운 C++ 클래스... 를 선택하고 Actor 클래스를 부모 클래스로 선택하고 다음을 클릭한다.
새 클래스 이름을 "FPSProjectile"로 하고 클래스 생성을 클릭한다.
USphereComponent 추가
FPSProjectile.h로 가서 USphereComponent의 선언을 다음처럼 추가해준다.
ProjectileMovementComponent에서 함수를 호출하려고 할 때, 불완전한 형식은 사용할 수 없다는 에러가 발생하면 "Engine/Classes/GameFramework/ProjectileMovementComponent.h"를 cpp의 전처리기에 추가해주자.
프로젝트를 새로 생성하고 Pawn 클래스를 상속받는 "CollidingPawn"을 생성한다. 이 폰은 컴포넌트를 가지고 레벨 안에서 이동하고 입체 오브젝트와 충돌하게 된다.
CollidingPawn.h의 클래스 정의 하단부에 UParticleSystemComponent를 추가한다.
UParticleSystemComponent* OurParticleSystem;
UParticleSystemComponent가 정의되어 있지 않다고 에러가 발생한다면, CollidingPawn.generated.h 포함 전처리기 위쪽에서 "Engine/Classes/Particles/ParticleSystemComponent.h"을 포함시켜 주면 된다.
// Fill out your copyright notice in the Description page of Project Settings.
여기에 대한 또 다른 해결책으로는 UParticleSystemComponent 타입의 변수를 선언할 때, 아래처럼 앞에 class를 붙여주면 헤더를 .h에 포함하지 않아도 에러가 발생하지 않는다.
classUParticleSystemComponent* OurParticleSystem;
대신 이 경우에는 .cpp에서 해당 타입의 변수를 사용할 때, 불완전한 형식을 사용할 수 없다는 에러가 발생할 것이기 때문에 .cpp의 헤더 포함 전처리기에 "Engine/Classes/Particles/ParticleSystemComponent.h"를 포함하는 코드를 추가시켜주어야 한다.
멤버 변수로 만들지 않아도 컴포넌트를 만들 수 있지만, 코드에서 컴포넌트를 사용하려면 클래스 멤버 변수로 만들어야 한다.
이 다음에는 CollidingPawn.cpp의 ACollidingPawn::ACollidingPawn() 생성자 함수를 편집해서 필요한 컴포넌트들을 스폰할 코드를 추가하고 계층구조로 배치해야 한다. 물리 월드와 상호작용을 위한 Sphere Component, 콜리전 모양을 시각적으로 보여줄 Static Mesh Component, 시각적인 효과를 더하며 켜고 끌 수 있는 Particle System Component, 게임 내의 시점 제어를 위해 Camera Component에 덧붙일 Spring Arm Component를 만든다.
먼저 계층구조에서 루트가 될 컴포넌트를 결정해야 한다. 이 튜토리얼에서는 Sphere Component가 루트 컴포넌트가 된다. 물리적으로 실존이 있고, 게임 월드와의 상호작용이 가능하기 때문이다. 참고로 액터에는 계층구조 안에서 다수의 물리 기반 컴포넌트가 있을 수 있지만, 이 튜토리얼에서는 하나만 사용한다.
ConstructorHelpers가 정의되어 있지 않은 문제는 CollidingPawh.cpp에 "ConstructorHelpers.h"를 포함시켜주면 된다.
#include "ConstructorHelpers.h"
여기까지 해결하고 나면 ConstructorHelpers::FObjectFinder에서 [클래스 템플릿 "ConstructorHelpers::FObjectFinder"에 대한 인수 목록이 없습니다.] 라는 에러가 발생할 것이다. 이 문제를 해결하기 위해서 ConstructorHelpers::FObjectFinder의 원형을 살펴보면 ConstructorHelpers::FObjectFinder는 템플릿을 사용하는 것을 알 수 있다. 그렇다면 여기서 중요한 점은 템플릿 인자에 어떤 타입이 들어가야 하는가가 문제인데, 이 것은 SphereVisualAsset의 선언 2줄 아래를 보면 이 변수가 SetStaticMesh() 함수에 대입되는 것을 알 수 있다. 이 함수가 받는 매개변수의 타입은 UStaticMesh로서 SphereVisualAsset.Object는 UStaticMesh 타입임을 유추할 수 있다.
Spring Arm Component는 폰보다 느린 가속/감속을 따라다니는 카메라에 적용시킬 수 있기 때문에, 카메라의 부드러운 부착점이 된다. 또한 카메라가 입체 오브젝트를 뚫고 지나가지 못하게 하는 기능을 내장하고 있어서, 삼인칭 게임에서 구석에서 벽을 등지는 상황에 유용하게 사용된다.
언리얼 에디터로 돌아왔다면, 프로젝트의 입력 세팅을 할 차례다. 이 세팅은 편집 드롭다운 메뉴의 프로젝트 세팅에서 찾을 수 있다.
프로젝트 세팅 창을 열었다면, 좌측의 엔진 섹션에서 입력을 찾아서 클릭한 뒤 아래와 같이 입력 매핑을 세팅하자.
이번에는 Pawn에서 모든 이동 처리를 하는 대신에, Movement Component를 만들어서 관리를 시키도록 해보자. 이 튜토리얼에서 Pawn Movement Component 클래스를 확장해서 사용한다.[각주:1] 파일 드롭다운 메뉴의 [새로운 C++ 클래스] 명령을 선택한다.
Pawn 클래스와 달리 Pawn Movement Component 클래스는 기본적으로 보이지 않기 때문에 모든 클래스 보기 옵션을 선택해야 한다.
검색창에 movement를 검색하면 찾고자 하는 클래스의 범위를 빠르게 좁힐 수 있다.
우리가 만든 Pawn 클래스의 이름이 "CollidingPawn"이기 때문에 이 Movement Component의 이름은 "CollidingPawnMovementComponent"로 정하자.
입력 환경설정에 대한 정의와 CollidingPawnMovementComponent의 생성으로 모두 끝마쳤으므로, 비주얼 스튜디오로 돌아가서 다시 코드 작업을 해야한다.
비주얼 스튜디오로 돌아왔으면 이제 커스텀 폰 무브먼트 컴포넌트의 작동방식을 코딩하면 된다. Actor의 Tick() 함수 역할을 하는 TickComponent() 함수가 각 프레임 별로 어떻게 동작할지를 정의해야 한다. 우선은 부모 클래스의 TickComponent() 함수를 덮어쓰는 것으로 시작한다.
이 컴포넌트는 다른 컴포넌트들과 달리 컴포넌트 계층구조에 붙일 필요가 없다. 다른 컴포넌트들의 경우에는 모두 씬 컴포넌트로 물리적인 위치가 필요한 것들이었지만, 이 컴포넌트는 물리적 오브젝트를 나타내는 것이 아니기 때문에, 물리적인 위치에 존재한다든가 다른 컴포넌트에 덧붙인다던가 하는 개념을 가지지 않는다.
Pawn 클래스에는 GetMovementComponent() 라는 함수가 있는데 이것은 엔진의 다른 클래스들이 현재 Pawn이 사용중인 Pawn Movement Component에 접근할 수 있도록 하는데 사용된다. 이 함수가 커스터마이징한 CollidingPawnMovementComponent를 반환하도록 하려면 이 함수를 덮어씌워야 한다. CollidingPawn.h에 다음 코드를 추가한다.
컴포넌트가 이동하다가 충돌이 발생했을 때, 제자리에 멈추는 대신 충돌체의 표면을 타고 미끄러지듯이 이동하도록 도와주는 함수
AddInputVector(Vector);
매개변수로 받은 벡터를 누적 입력에 더하는 함수
7. FVector
FVector Vector;
언리얼 엔진에서 3D 상의 위치나, 속도를 나타내는데 쓰이는 구조체
Vector.GetClampedToMaxSize(Value);
길이가 Value인 이 벡터의 복사본을 만들어서 반환하는 함수
Vector.IsNearlyZero();
지정된 허용오차 내에서 벡터의 길이가 0에 근접하는지 확인하는 함수
8. FHitResult
FHitResult Hit;
충돌에 대한 정보를 담고 있는 구조체
Hit.Time;
Hit가 발생했을 때, TraceStart와 TraceEnd 사이의 충돌이 발생한 시간을 의미한다. (0.0~1.0)
Hit.Normal
충돌이 발생한 오브젝트의 월드 공간 상의 법선 방향
Hit.IsValidBlockingHit();
막히는 충돌이 발생했을 때 true를 반환하는 함수
9. AActor
GetActorRotation();
액터의 현재 회전을 반환하는 함수
SetActorRotation(FRotator());
액터의 회전을 설정하는 함수
Pawn Movement Component 에는 흔한 물리 함수성에 도움이 되는 강력한 내장 기능이 몇 가지 들어있어, 여러가지 폰 유형에 무브먼트 코드를 공유하기가 좋다. 컴포넌트 를 사용하여 함수성을 분리시켜 놓는 것은 매우 좋은 습관인데, 프로젝트의 덩치가 커지면서 폰 도 복잡해 지기 때문이다. [본문으로]